Middle temporal gyrus encodes individual differences in perceived facial attractiveness.

2013 ◽  
Vol 7 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Oshin Vartanian ◽  
Vinod Goel ◽  
Elaine Lam ◽  
Maryanne Fisher ◽  
Josipa Granic
2018 ◽  
Author(s):  
Meichao Zhang ◽  
Nicola Savill ◽  
Daniel S. Margulies ◽  
Jonathan Smallwood ◽  
Elizabeth Jefferies

AbstractAlthough the default mode network (DMN) is associated with off-task states, recent evidence shows it can support tasks. This raises the question of how DMN activity can be both beneficial and detrimental to task performance. The decoupling hypothesis proposes that these opposing states occur because DMN supports modes of cognition driven by external input, as well as retrieval states unrelated to input. To test this account, we capitalised on the fact that during reading, regions in DMN are thought to represent the meaning of words through their coupling with visual cortex; the absence of visual coupling should occur when the attention drifts off from the text. We examined individual differences in reading comprehension and off-task thought while participants read an expository text in the laboratory, and related variation in these measures to (i) the neural response during reading in the scanner (Experiment 1), and (ii) patterns of intrinsic connectivity measured in the absence of a task (Experiment 2). The responsiveness of a region of DMN in middle temporal gyrus (MTG) to orthographic inputs during reading predicted good comprehension, while intrinsic decoupling of the same site from visual cortex at rest predicted more frequent off-task thought. In addition, good comprehension was associated with greater intrinsic connectivity between MTG and medial prefrontal regions also within DMN, demonstrating that DMN coupling can support task performance, not only off-task states. These findings indicate that the opposing roles of DMN in cognition reflect its capacity to support both perceptually-coupled and decoupled cognition.


Author(s):  
Mohammad S.E Sendi ◽  
Godfrey D Pearlson ◽  
Daniel H Mathalon ◽  
Judith M Ford ◽  
Adrian Preda ◽  
...  

Although visual processing impairments have been explored in schizophrenia (SZ), their underlying neurobiology of the visual processing impairments has not been widely studied. Also, while some research has hinted at differences in information transfer and flow in SZ, there are few investigations of the dynamics of functional connectivity within visual networks. In this study, we analyzed resting-state fMRI data of the visual sensory network (VSN) in 160 healthy control (HC) subjects and 151 SZ subjects. We estimated 9 independent components within the VSN. Then, we calculated the dynamic functional network connectivity (dFNC) using the Pearson correlation. Next, using k-means clustering, we partitioned the dFNCs into five distinct states, and then we calculated the portion of time each subject spent in each state, that we termed the occupancy rate (OCR). Using OCR, we compared HC with SZ subjects and investigated the link between OCR and visual learning in SZ subjects. Besides, we compared the VSN functional connectivity of SZ and HC subjects in each state. We found that this network is indeed highly dynamic. Each state represents a unique connectivity pattern of fluctuations in VSN FNC, and all states showed significant disruption in SZ. Overall, HC showed stronger connectivity within the VSN in states. SZ subjects spent more time in a state in which the connectivity between the middle temporal gyrus and other regions of VNS is highly negative. Besides, OCR in a state with strong positive connectivity between middle temporal gyrus and other regions correlated significantly with visual learning scores in SZ.


Author(s):  
XIAOFENG YU ◽  
ZHILONG ZHU ◽  
SHUZHAN ZHENG ◽  
JIAN JIANG ◽  
JUANJUAN JIANG ◽  
...  

Subjective cognitive decline (SCD), characterized by self-perceived subtle cognitive impairment ahead of the appearance of explicit and measurable cognitive deficits, is regarded as the preclinical manifestation of the pathological change continuum of Alzheimer’s disease (AD). We were committed to exploring the amyloid and glucose metabolic signatures related to imminent brain metabolic changes in SCD subjects. This study included 39 subjects (mean age = 71.9 years; 14 males and 25 females) diagnosed with SCD disease and 39 gender-matched healthy controls (HCs) (mean age = 75.2; 16 males and 23 females) with brain [18F] fluorodeoxyglucose positron emission tomography (PET) images and [18F] florbetapir PET images. The standardized uptake value ratios (SUVRs) of PET images within the regions of interest (ROIs) were calculated. Inter-group SUVR differences were assessed by two-sample [Formula: see text]-testing and receiver operating characteristic curve (ROC) analyses. A generalized linear model (GLM) was employed to evaluate the correlations between amyloid and FDG uptake. Compared with HCs, SCD subjects showed significantly increased amyloid SUVR, as well as significantly increased glucose SUVR in the olfactory, amygdala, thalamus, heschl gyrus, superior and middle temporal gyrus and temporal pole (all [Formula: see text]). The amyloid SUVR of thalamus was found to have a better ROC result (area under the curve (AUC): 0.77, 95% confidence interval (CI): 0.66–0.86) in the HC group, as was the case with the glucose SUVR of the middle temporal gyrus (AUC: 0.83, 95% CI: 0.73–0.91). There were significant positive correlations between amyloid and glucose SUVRs ([Formula: see text]). The amyloid SUVR of the thalamus showed a significantly better main effect (odd ratio [Formula: see text] 2.91, 95% CI: 1.44–6.7, [Formula: see text]), and the glucose SUVR of the heschl gyrus indicated an enhanced main effect (odd ratio [Formula: see text] 5.08, 95% CI: 1.86–18.15, [Formula: see text]). SCD subjects demonstrated significant amyloid accumulation and glucose hypermetabolism in specific brain regions, and amyloid pathology overlapped with regions of glucose abnormality. These findings may advance the understanding of imminent pathological changes in the SCD stage and help to provide clinical guidelines for interventional management.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1794
Author(s):  
Vilfredo De Pascalis ◽  
Giuliana Cirillo ◽  
Arianna Vecchio

Previously published models of frontal activity linked high relative left frontal activity to the behavioral approach system (BAS) and impulsivity. Additionally, these models did not account for BAS facets encompassing the anticipation of reward, i.e., goal-driven persistence (BAS–GDP) and reward interest (BAS–RI), from those that deal with the actual hedonic experience of reward, i.e., reward reactivity (BAS–RR) and impulsivity (BAS–I). Using resting electroencephalographic (EEG) recordings, the source localization (LORETA) method allowed us to calculate the hemispheric asymmetry of the current density within the alpha band (7.5–13 Hz) in ten regions of interest. Compared to low BAS subtrait scorers, high BAS subtrait scorers (except for BAS–I) were correlated with greater relative left-sided activity in the superior frontal gyrus (BA10). Further, an isolated effective coherence (iCOH) analysis of the beta activity (21 Hz) disclosed that high impulsive scorers as compared to low impulsive ones had higher connectivity between the superior frontal gyrus and middle temporal gyrus, which was not compensated for by enhanced inhibitory alpha (11 Hz) connectivity between these regions. For the beta frequency, we also found in highly impulsive individuals that (i) both left and right middle temporal lobes directly influenced the activity of the left and right superior frontal lobes, and (ii) a clear decoupling between left and right superior frontal lobes. These findings could indicate reduced control by the supervisory system in more impulsive individuals.


2019 ◽  
Vol 31 (11) ◽  
pp. 1599-1616 ◽  
Author(s):  
Charlotte Murphy ◽  
Shirley-Ann Rueschemeyer ◽  
Jonathan Smallwood ◽  
Elizabeth Jefferies

In the absence of sensory information, we can generate meaningful images and sounds from representations in memory. However, it remains unclear which neural systems underpin this process and whether tasks requiring the top–down generation of different kinds of features recruit similar or different neural networks. We asked people to internally generate the visual and auditory features of objects, either in isolation (car, dog) or in specific and complex meaning-based contexts (car/dog race). Using an fMRI decoding approach, in conjunction with functional connectivity analysis, we examined the role of auditory/visual cortex and transmodal brain regions. Conceptual retrieval in the absence of external input recruited sensory and transmodal cortex. The response in transmodal regions—including anterior middle temporal gyrus—was of equal magnitude for visual and auditory features yet nevertheless captured modality information in the pattern of response across voxels. In contrast, sensory regions showed greater activation for modality-relevant features in imagination (even when external inputs did not differ). These data are consistent with the view that transmodal regions support internally generated experiences and that they play a role in integrating perceptual features encoded in memory.


Sign in / Sign up

Export Citation Format

Share Document