Some effects of changing time patterns and articulation upon intelligibility and word reception.

1955 ◽  
Author(s):  
Gilbert C. Tolhurst
Keyword(s):  
2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ozan Isler ◽  
Simon Gächter ◽  
A. John Maule ◽  
Chris Starmer

AbstractHumans frequently cooperate for collective benefit, even in one-shot social dilemmas. This provides a challenge for theories of cooperation. Two views focus on intuitions but offer conflicting explanations. The Social Heuristics Hypothesis argues that people with selfish preferences rely on cooperative intuitions and predicts that deliberation reduces cooperation. The Self-Control Account emphasizes control over selfish intuitions and is consistent with strong reciprocity—a preference for conditional cooperation in one-shot dilemmas. Here, we reconcile these explanations with each other as well as with strong reciprocity. We study one-shot cooperation across two main dilemma contexts, provision and maintenance, and show that cooperation is higher in provision than maintenance. Using time-limit manipulations, we experimentally study the cognitive processes underlying this robust result. Supporting the Self-Control Account, people are intuitively selfish in maintenance, with deliberation increasing cooperation. In contrast, consistent with the Social Heuristics Hypothesis, deliberation tends to increase the likelihood of free-riding in provision. Contextual differences between maintenance and provision are observed across additional measures: reaction time patterns of cooperation; social dilemma understanding; perceptions of social appropriateness; beliefs about others’ cooperation; and cooperation preferences. Despite these dilemma-specific asymmetries, we show that preferences, coupled with beliefs, successfully predict the high levels of cooperation in both maintenance and provision dilemmas. While the effects of intuitions are context-dependent and small, the widespread preference for strong reciprocity is the primary driver of one-shot cooperation. We advance the Contextualised Strong Reciprocity account as a unifying framework and consider its implications for research and policy.


2021 ◽  
Vol 2 (1) ◽  
pp. 113-139
Author(s):  
Dimitrios Tsiotas ◽  
Thomas Krabokoukis ◽  
Serafeim Polyzos

Within the context that tourism-seasonality is a composite phenomenon described by temporal, geographical, and socio-economic aspects, this article develops a multilevel method for studying time patterns of tourism-seasonality in conjunction with its spatial dimension and socio-economic dimension. The study aims to classify the temporal patterns of seasonality into regional groups and to configure distinguishable seasonal profiles facilitating tourism policy and development. The study applies a multilevel pattern recognition approach incorporating time-series assessment, correlation, and complex network analysis based on community detection with the use of the modularity optimization algorithm, on data of overnight-stays recorded for the time-period 1998–2018. The analysis reveals four groups of seasonality, which are described by distinct seasonal, geographical, and socio-economic profiles. Overall, the analysis supports multidisciplinary and synthetic research in the modeling of tourism research and promotes complex network analysis in the study of socio-economic systems, by providing insights into the physical conceptualization that the community detection based on the modularity optimization algorithm can enjoy to the real-world applications.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e92745 ◽  
Author(s):  
Jiaojiao Wang ◽  
Zhidong Cao ◽  
Daniel Dajun Zeng ◽  
Quanyi Wang ◽  
Xiaoli Wang ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Omar Lopez-Rincon ◽  
Oleg Starostenko ◽  
Alejandro Lopez-Rincon

Algorithmic music composition has recently become an area of prestigious research in projects such as Google’s Magenta, Aiva, and Sony’s CSL Lab aiming to increase the composers’ tools for creativity. There are advances in systems for music feature extraction and generation of harmonies with short-time and long-time patterns of music style, genre, and motif. However, there are still challenges in the creation of poly-instrumental and polyphonic music, pieces become repetitive and sometimes these systems copy the original files. The main contribution of this paper is related to the improvement of generating new non-plagiary harmonic developments constructed from the symbolic abstraction from MIDI music non-labeled data with controlled selection of rhythmic features based on evolutionary techniques. Particularly, a novel approach for generating new music compositions by replacing existing harmony descriptors in a MIDI file with new harmonic features from another MIDI file selected by a genetic algorithm. This allows combining newly created harmony with a rhythm of another composition guaranteeing the adjustment of a new music piece to a distinctive genre with regularity and consistency. The performance of the proposed approach has been assessed using artificial intelligent computational tests, which assure goodness of the extracted features and shows its quality and competitiveness.


2021 ◽  
Vol 2021 (1) ◽  
pp. 10044
Author(s):  
Ariane Froidevaux ◽  
Serge P. Da Motta Veiga ◽  
Ieva Urbanaviciute ◽  
Franciska Krings ◽  
Jérôme Rossier

2015 ◽  
Vol 12 (2) ◽  
pp. 026004 ◽  
Author(s):  
Daniela Sabrina Andres ◽  
Daniel Cerquetti ◽  
Marcelo Merello

Sign in / Sign up

Export Citation Format

Share Document