Nice and easy: Mismatch negativity responses reveal a significant correlation between aesthetic appreciation and perceptual learning.

Author(s):  
Pietro Sarasso ◽  
Marco Neppi-Modona ◽  
Nicola Rosaia ◽  
Pasqualina Perna ◽  
Paolo Barbieri ◽  
...  
Author(s):  
Pietro Sarasso ◽  
Pasqualina Perna ◽  
Paolo Barbieri ◽  
Marco Neppi-Modona ◽  
Katiuscia Sacco ◽  
...  

AbstractIs it true that we learn better what we like? Current neuroaesthetic and neurocomputational models of aesthetic appreciation postulate the existence of a correlation between aesthetic appreciation and learning. However, even though aesthetic appreciation has been associated with attentional enhancements, systematic evidence demonstrating its influence on learning processes is still lacking. Here, in two experiments, we investigated the relationship between aesthetic preferences for consonance versus dissonance and the memorisation of musical intervals and chords. In Experiment 1, 60 participants were first asked to memorise and evaluate arpeggiated triad chords (memorisation phase), then, following a distraction task, chords’ memorisation accuracy was measured (recognition phase). Memorisation resulted to be significantly enhanced for subjectively preferred as compared with non-preferred chords. To explore the possible neural mechanisms underlying these results, we performed an EEG study, directed to investigate implicit perceptual learning dynamics (Experiment 2). Through an auditory mismatch detection paradigm, electrophysiological responses to standard/deviant intervals were recorded, while participants were asked to evaluate the beauty of the intervals. We found a significant trial-by-trial correlation between subjective aesthetic judgements and single trial amplitude fluctuations of the ERP attention-related N1 component. Moreover, implicit perceptual learning, expressed by larger mismatch detection responses, was enhanced for more appreciated intervals. Altogether, our results showed the existence of a relationship between aesthetic appreciation and implicit learning dynamics as well as higher-order learning processes, such as memorisation. This finding might suggest possible future applications in different research domains such as teaching and rehabilitation of memory and attentional deficits.


2017 ◽  
Vol 42 (11) ◽  
pp. 2206-2213 ◽  
Author(s):  
Veronica B Perez ◽  
Melissa Tarasenko ◽  
Makoto Miyakoshi ◽  
Sean T Pianka ◽  
Scott D Makeig ◽  
...  

2007 ◽  
Vol 21 (3-4) ◽  
pp. 204-213 ◽  
Author(s):  
Torsten Baldeweg

Neuronal adaptation is a ubiquitous property of the cortex. This review presents evidence from MMN studies that show ERP components with similar adaptive properties. Specifically, I consider the empirical evidence from the perspective of a predictive coding model of perceptual learning and inference. Within this framework, ERP and neuronal repetition effects (repetition suppression) are seen as reductions in prediction error, a process that requires synaptic modifications. Repetition positivity is a human auditory ERP component, which shows similar properties to stimulus-specific adaptation of auditory cortex neurons; a candidate mechanism for auditory trace formation.


Author(s):  
Martin Chavant ◽  
Alexis Hervais-Adelman ◽  
Olivier Macherey

Purpose An increasing number of individuals with residual or even normal contralateral hearing are being considered for cochlear implantation. It remains unknown whether the presence of contralateral hearing is beneficial or detrimental to their perceptual learning of cochlear implant (CI)–processed speech. The aim of this experiment was to provide a first insight into this question using acoustic simulations of CI processing. Method Sixty normal-hearing listeners took part in an auditory perceptual learning experiment. Each subject was randomly assigned to one of three groups of 20 referred to as NORMAL, LOWPASS, and NOTHING. The experiment consisted of two test phases separated by a training phase. In the test phases, all subjects were tested on recognition of monosyllabic words passed through a six-channel “PSHC” vocoder presented to a single ear. In the training phase, which consisted of listening to a 25-min audio book, all subjects were also presented with the same vocoded speech in one ear but the signal they received in their other ear differed across groups. The NORMAL group was presented with the unprocessed speech signal, the LOWPASS group with a low-pass filtered version of the speech signal, and the NOTHING group with no sound at all. Results The improvement in speech scores following training was significantly smaller for the NORMAL than for the LOWPASS and NOTHING groups. Conclusions This study suggests that the presentation of normal speech in the contralateral ear reduces or slows down perceptual learning of vocoded speech but that an unintelligible low-pass filtered contralateral signal does not have this effect. Potential implications for the rehabilitation of CI patients with partial or full contralateral hearing are discussed.


2020 ◽  
Vol 31 (2) ◽  
pp. 81-86
Author(s):  
Wido Nager ◽  
Tilla Franke ◽  
Tobias Wagner-Altendorf ◽  
Eckart Altenmüller ◽  
Thomas F. Münte

Abstract. Playing a musical instrument professionally has been shown to lead to structural and functional neural adaptations, making musicians valuable subjects for neuroplasticity research. Here, we follow the hypothesis that specific musical demands further shape neural processing. To test this assumption, we subjected groups of professional drummers, professional woodwind players, and nonmusicians to pure tone sequences and drum sequences in which infrequent anticipations of tones or drum beats had been inserted. Passively listening to these sequences elicited a mismatch negativity to the temporally deviant stimuli which was greater in the musicians for tone series and particularly large for drummers for drum sequences. In active listening conditions drummers more accurately and more quickly detected temporally deviant stimuli.


2006 ◽  
Vol 20 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Bruce D. Dick ◽  
John F. Connolly ◽  
Michael E. Houlihan ◽  
Patrick J. McGrath ◽  
G. Allen Finley ◽  
...  

Abstract: Previous research has found that pain can exert a disruptive effect on cognitive processing. This experiment was conducted to extend previous research with participants with chronic pain. This report examines pain's effects on early processing of auditory stimulus differences using the Mismatch Negativity (MMN) in healthy participants while they experienced experimentally induced pain. Event-related potentials (ERPs) were recorded using target and standard tones whose pitch differences were easy- or difficult-to-detect in conditions where participants attended to (active attention) or ignored (passive attention) the stimuli. Both attention manipulations were conducted in no pain and pain conditions. Experimentally induced ischemic pain did not disrupt the MMN. However, MMN amplitudes were larger to difficult-to-detect deviant tones during painful stimulation when they were attended than when they were ignored. Also, MMN amplitudes were larger to the difficult- than to the easy-to-detect tones in the active attention condition regardless of pain condition. It appears that rather than exerting a disruptive effect, the presence of experimentally induced pain enhanced early processing of small stimulus differences in these healthy participants.


2002 ◽  
Vol 16 (2) ◽  
pp. 114-118 ◽  
Author(s):  
Timo Ruusuvirta ◽  
Heikki Hämäläinen

Abstract Human event-related potentials (ERPs) to a tone continuously alternating between its two spatial loci of origin (middle-standards, left-standards), to repetitions of left-standards (oddball-deviants), and to the tones originally representing these repetitions presented alone (alone-deviants) were recorded in free-field conditions. During the recordings (Fz, Cz, Pz, M1, and M2 referenced to nose), the subjects watched a silent movie. Oddball-deviants elicited a spatially diffuse two-peaked deflection of positive polarity. It differed from a deflection elicited by left-standards and commenced earlier than a prominent deflection of negative polarity (N1) elicited by alone-deviants. The results are discussed in the context of the mismatch negativity (MMN) and previous findings of dissociation between spatial and non-spatial information in auditory working memory.


Sign in / Sign up

Export Citation Format

Share Document