Use of the Term ‘Young's Equation’ for Contact Angles

Nature ◽  
1957 ◽  
Vol 180 (4590) ◽  
pp. 809-810 ◽  
Author(s):  
N. K. ADAM
2015 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Xiao-Song Wang

<p class="1Body">The surface tension depends on the radius of curvature of the liquid-vapor interface. For nano-scale wetting phenomena of cylindrical droplets, we should consider the curvature effects of the surface tension and the line tension. However, previous works have not analyzed the influence of the curvature effects of the surface tension. In this paper, we discuss the influence of the curvature effects of the surface tension on the contact angles based the Kim-Lee-Han-Park equation. The hydrophilic wetting of cylindrical droplets on rough and chemically homogeneous non-deformable substrates were studied by methods of thermodynamics. A generalized Young’s equation for wetting of cylindrical droplets on chemically homogeneous and rough non-deformable substrates was derived based on the thermodynamic equilibrium conditions. This equation reduces to the Wenzel equation if we ignore the influence of line tension. For contact angles of cylindrical droplets with sufficiently large radii, a generalized Young’s equations were derived considering the curvature effects of the surface tension.</p>


2017 ◽  
Vol 147 (8) ◽  
pp. 084708 ◽  
Author(s):  
Hao Jiang ◽  
Florian Müller-Plathe ◽  
Athanassios Z. Panagiotopoulos

2013 ◽  
Vol 28 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Xiao-Song Wang ◽  
Shu-Wen Cui ◽  
Long Zhou ◽  
Sheng-Hua Xu ◽  
Zhi-Wei Sun ◽  
...  

TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 253-262 ◽  
Author(s):  
ERIK BOHLIN ◽  
CAISA JOHANNSON ◽  
MAGNUS LESTELIUS

The effect of coating structure variations on flexographic print quality was studied using pilot-coated paperboard samples with different latex content and latex particle sizes. Two latexes, with particle sizes of 120 nm and 160 nm, were added at either 12 parts per hundred (pph) or 18 pph to the coating formulation. The samples were printed with full tone areas at print forces of 25 N and 50 N in a laboratory flexographic printing press using a waterbased ink. A high ratio of uncovered areas (UCAs) could be detected for the samples that contained 18 pph latex printed at a print force of 25 N. UCAs decreased with increased print force and with decreased amounts of latex in the coating formulation. The fraction of latex covered area on the coating surface was estimated to be 0.35–0.40 for the 12 pph, and 0.70–0.75 for the 18 pph samples. The ink penetration depth into the coating layer could be linked to the fraction of latex-free areas on the coating surface. Optical cross section microscopy indicated that a higher printing force did not increase the depth of penetrated ink to any greater extent. Higher printing force did increase contact between plate and substrate, leading to an improved distribution of the ink. This, in turn, increased print density and decreased UCAs. On closer inspection, the UCAs could be categorized as being induced by steep topographic changes. When appearing at other locations, they were more likely to be caused by poor wetting of the surface. To understand the wetting behavior of the coating surface, observed contact angles were compared with calculated contact angles on surfaces of mixed composition.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (2) ◽  
pp. 33-38 ◽  
Author(s):  
ANNA JONHED ◽  
LARS JÄRNSTRÖM

The aim of this study was to investigate the properties of hydrophobically modified (HM) quaterna-ry ammonium starch ethers for paper sizing. These starches possess temperature-responsive properties; that is, gelation or phase separation occurs at a certain temperature upon cooling. This insolubility of the HM starches in water at room temperature improved their performance as sizing agents. The contact angles for water on sized liner were substantially larger than on unsized liner. When the application temperature was well above the critical phase-separation temperature, larger contact angles were obtained for liner independently of pH compared with those at the lower application temperature. Cobb60 values for liner decreased upon surface sizing, with a low pH and high application temperature giving lower water penetration. Contact angles on greaseproof paper decreased upon sur-face sizing as compared to unsized greaseproof paper, independently of pH and temperature. Greaseproof paper showed no great difference between unsized substrates and substrates sized with HM starch at different pH. This is probably due to the already hydrophobic nature of greaseproof paper. However, the Cobb60 values increased at low pH and low application temperature. Surfactants were added to investigate how they affect the sized surface. Addition of surfactant reduces the contact angles, in spite of indications of complex formation.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2097865
Author(s):  
Li Jian

The surface treatment of carbon fibers (CFs) was carried out using a self-synthesized sizing agent. The effects of sizing agent on the surface of CFs and the interface properties of CF/polymethyl methacrylate (PMMA) composites were mainly studied. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and static contact angle were used to compare and study the CFs before and after the surface treatment, including surface morphology, surface chemical element composition, and wettability of the surface. The influence of sizing agent on the mechanical properties of CF/PMMA resin composite interface was investigated. The results show that after sizing treatment, the CF surface O/C value increased by 35.1% and the contact angles of CF and resin decreased by 16.2%. The interfacial shear strength and interlayer shear strength increased by 12.6%.


2021 ◽  
pp. 002203452110181
Author(s):  
A.A. Balhaddad ◽  
I.M. Garcia ◽  
L. Mokeem ◽  
M.S. Ibrahim ◽  
F.M. Collares ◽  
...  

Cervical composites treating root carious and noncarious cervical lesions usually extend subgingivally. The subgingival margins of composites present poor plaque control, enhanced biofilm accumulation, and cause gingival irritation. A potential material to restore such lesions should combine agents that interfere with bacterial biofilm development and respond to acidic conditions. Here, we explore the use of new bioresponsive bifunctional dental composites against mature microcosm biofilms derived from subgingival plaque samples. The designed formulations contain 2 bioactive agents: dimethylaminohexadecyl methacrylate (DMAHDM) at 3 to 5 wt.% and 20 wt.% nanosized amorphous calcium phosphate (NACP) in a base resin. Composites with no DMAHDM and NACP were used as controls. The newly formulated 5% DMAHDM–20% NACP composite was analyzed by micro-Raman spectroscopy and transmission electron microscopy. The wettability and surface-free energy were also assessed. The inhibitory effect on the in vitro biofilm growth and the 16S rRNA gene sequencing of survival bacterial colonies derived from the composites were analyzed. Whole-biofilm metabolic activity, polysaccharide production, and live/dead images of the biofilm grown over the composites complement the microbiological assays. Overall, the designed formulations had higher contact angles with water and lower surface-free energy compared to the commercial control. The DMAHDM-NACP composites significantly inhibited the growth of total microorganisms, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum by 3 to 5-log ( P < 0.001). For the colony isolates from control composites, the composition was typically dominated by the genera Veillonella, Fusobacterium, Streptococcus, Eikenella, and Leptotrichia, while Fusobacterium and Veillonella dominated the 5% DMAHDM–20% NACP composites. The DMAHDM-NACP composites contributed to over 80% of reduction in metabolic and polysaccharide activity. The suppression effect on plaque biofilms suggested that DMAHDM-NACP composites might be used as a bioactive material for cervical restorations. These results may propose an exciting path to prevent biofilm growth and improve dental composite restorations’ life span.


Sign in / Sign up

Export Citation Format

Share Document