In vivo Antibody Production by Spleen Cells after Incubation in vitro with Heterologous Antilymphocyte Plasma

Nature ◽  
1968 ◽  
Vol 220 (5174) ◽  
pp. 1350-1352 ◽  
Author(s):  
H. F. JEEJEEBHOY ◽  
A. G. RABBAT
1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


1983 ◽  
Vol 157 (1) ◽  
pp. 141-154 ◽  
Author(s):  
P J Fink ◽  
I L Weissman ◽  
M J Bevan

To detect a strong cytotoxic T lymphocyte (CTL) response to minor histocompatibility (H) antigens in a 5-d mixed lymphocyte culture, it is necessary to use a responder that has been primed in vivo with antigen-bearing cells. It has previously been shown that minor-H-specific CTL can be primed in vivo both directly by foreign spleen cells and by presentation of foreign minor H antigens on host antigen-presenting cells. This latter route is evident in the phenomenon of cross-priming, in which H-2 heterozygous (A x B)F1 mice injected 2 wk previously with minor H-different H-2A (A') spleen cells generate both H-2A- and H-2B-restricted minor-H-specific CTL. In a study of the kinetics of direct- vs. cross-priming to minors in F1 mice, we have found that minor H-different T cells actually suppress the induction of virgin CTL capable of recognizing them. CTL activity measured from F1 mice 3-6 d after injection with viable A' spleen cells is largely H-2B restricted. The H-2A-restricted response recovers such that roughly equal A- and B-restricted activity is detected in mice as early as 8-10 d postinjection. This temporary hyporeactivity does not result from generalized immunosuppression--it is specific for those CTL that recognize the foreign minor H antigen in the context of the H-2 antigens on the injected spleen cells. The injected spleen cells that mediate this suppression are radiosensitive T cells; Lyt-2+ T cells are highly efficient at suppressing the induction of CTL in vivo. No graft vs. host reaction by the injected T cells appears to be required, as suppression of direct primed CTL can be mediated by spleen cells that are wholly tolerant of both host H-2 and minor H antigens. Suppression cannot be demonstrated by in vitro mixing experiments. Several possible mechanisms for haplotype-specific suppression are discussed, including inactivation of responding CTL by veto cells and in vivo sequestration of responding CTL by the injected spleen cells.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 851-856 ◽  
Author(s):  
SA Burstein ◽  
SK Erb ◽  
JW Adamson ◽  
LA Harker

Abstract Mice injected chronically with antiplatelet serum develop an increase in the number of megakaryocytic progenitor cells compared to animals given normal rabbit serum. To examine the specificity of this response, progenitor cells giving rise to megakaryocyte, granulocyte-macrophage, erythroid, and mixed-cell colonies were assayed after injection of various heterosera or saline. All four colony types increased in the serum-treated groups. Since the in vitro proliferation of hematopoietic progenitor cells is promoted by supernatants of mitogen-stimulated spleen cells, we hypothesized that the immune response following antiserum administration resulted in the in vivo activation of T lymphocytes which produced or led to the production of colony stimulating activities. To test this hypothesis, cyclosporin A, a preferential inhibitor of T lymphocyte function, was given to mice concurrently with antiserum and also added to spleen cell cultures in the presence of pokeweed mitogen. Cyclosporin A abrogated the antiserum- related increases in progenitor cell numbers in vivo and the production of colony stimulating activity in vitro. The results suggest that the immune response related to antiserum administration results in the in vivo production of hematopoietic colony stimulating activities that may be identical to those produced in vitro by mitogen-stimulation of spleen cells.


1974 ◽  
Vol 139 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Patricia G. Spear ◽  
Gerald M. Edelman

In spite of the prenatal appearance of immunoglobulin-bearing lymphocytes and θ-positive lymphocytes in the spleens of Swiss-L mice, these mice are not able to produce detectable levels of humoral antibodies in response to antigen until after 1 wk of age. Adult levels of response are not achieved until 4–8 wk of age. In the presence of bacterial lipopolysaccharides, which can substitute for or enhance T-cell function, the B cells from young Swiss-L mice were found to be indistinguishable in function from adult B cells, both with respect to the numbers of plaque-forming cells (PFC) produced in vitro in response to antigen and with respect to the kinetics of PFC induction. The spleen cells from young Swiss-L mice are significantly less sensitive than adult spleen cells, however, to stimulation by the T cell mitogens, concanavalin A (Con A) and phytohemagglutinin (PHA). Very few Con A-responsive cells could be detected at birth but the numbers increased sharply with age until 3 wk after birth. On the other hand, PHA-responsive cells could not be detected in the spleen until about 3 wk of age. The latter cells were found to respond also to Con A, but at a lower dose (1 µg/ml) than that required for the bulk of the Con A-responsive cells (3 µg/ml). The cells that respond both to PHA and to Con A appear in the spleen at about the time that Swiss-L mice acquire the ability to produce humoral antibodies, and these cells can be depleted from the spleen by the in vivo administration of antithymocyte serum. The development of humoral immune responses in these mice therefore appears to be correlated with the appearance of recirculating T lymphocytes that are responsive both to PHA and to Con A.


1996 ◽  
Vol 16 (3) ◽  
pp. 1169-1178 ◽  
Author(s):  
D W White ◽  
G A Pitoc ◽  
T D Gilmore

The v-Rel oncoprotein of the avian Rev-T retrovirus is a member of the Rel/NF-kappa B family of transcription factors. The mechanism by which v-Rel malignantly transforms chicken spleen cells is not precisely known. To gain a better understanding of functions needed for transformation by v-Rel, we have now characterized the activities of mutant v-Rel proteins that are defective for specific protein-protein interactions. Mutant v-delta NLS, which has a deletion of the primary v-Rel nuclear localizing sequence, does not interact efficiently with I kappa B-alpha but still transforms chicken spleen cells approximately as well as wild-type v-Rel, indicating that interaction with I kappa B-alpha is not essential for the v-Rel transforming function. A second v-Rel mutant, v-SPW, has been shown to be defective for the formation of homodimers, DNA binding, and transformation. However, we now find that v-SPW can form functional DNA-binding heterodimers in vitro and in vivo with the cellular protein NF-kappa B p-52. Most strikingly, coexpression of v-SPW and p52 from a retroviral vector can induce the malignant transformation of chicken spleen cells, whereas expression of either protein alone cannot. Our results are most consistent with a model wherein Rel homodimers or heterodimers must bind DNA and alter gene expression in order to transform lymphoid cells.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2386-2395 ◽  
Author(s):  
GD Longmore ◽  
P Pharr ◽  
D Neumann ◽  
HF Lodish

Abstract Increasing direct and indirect evidence suggests that erythropoietin (Epo) promotes both erythropoiesis and megakaryocytopoiesis. Here we report that, in mice infected with a recombinant spleen focus-forming retrovirus (SFFV) expressing an oncogenic erythropoietin receptor (EpoR), there was an increase in platelet count preceding the ensuing erythrocytosis. Concurrently, there was a substantial increase in splenic megakaryocytes. Culture of the bone marrow and spleen cells from infected mice showed enhanced numbers of multipotent megakaryocytic progenitors. DNA polymerase chain reaction analysis of individual megakaryocyte-containing colonies showed recombinant SFFV (SFFVcEpoR) proviral integration. Immunofluorescence of spleen sections showed overexpression of EpoR protein in the megakaryocytes. Mice infected with a strain of SFFV also developed splenic megakaryocytosis without activating overexpression of the EpoR in megakaryocytes. This in vivo system shows that a relationship between erythropoiesis and thrombopoiesis can exist at the level of the Epo-EpoR signaling pathway. Also, SFFV-based vectors may be excellent vehicles for the introduction of genes into multipotent, hematopoietic progenitors, in vitro.


Sign in / Sign up

Export Citation Format

Share Document