Structure of the Subunits in the Thick Luminal Membrane of Rat Urinary Bladder

Nature ◽  
1970 ◽  
Vol 227 (5255) ◽  
pp. 280-281 ◽  
Author(s):  
R. C. WARREN ◽  
R. M. HICKS
1998 ◽  
Vol 274 (1) ◽  
pp. F91-F96 ◽  
Author(s):  
Peter R. Smith ◽  
Scott A. Mackler ◽  
Philip C. Weiser ◽  
David R. Brooker ◽  
Yoon J. Ahn ◽  
...  

The mammalian urinary bladder exhibits transepithelial Na+ absorption that contributes to Na+ gradients established by the kidney. Electrophysiological studies have demonstrated that electrogenic Na+ absorption across the urinary bladder is mediated in part by amiloride-sensitive Na+ channels situated within the apical membrane of the bladder epithelium. We have used a combination of in situ hybridization, Northern blot analysis, and immunocytochemistry to examine whether the recently cloned epithelial Na+ channel (ENaC) is expressed in the rat urinary bladder. In situ hybridization and Northern blot analyses indicate that α-, β-, and γ-rat ENaC (rENaC) are expressed in rat urinary bladder epithelial cells. Quantitation of the levels of α-, β-, and γ-rENaC mRNA expression in rat urinary bladder, relative to β-actin mRNA expression, indicates that, although comparable levels of α- and β-rENaC subunits are expressed in the urinary bladder of rats maintained on standard chow, the level of γ-rENaC mRNA expression is 5- to 10-fold lower than α- or β-rENaC mRNA. Immunocytochemistry, using an antibody directed against α-rENaC, revealed that ENaCs are predominantly localized to the luminal membrane of the bladder epithelium. Together, these data demonstrate that ENaC is expressed in the mammalian urinary bladder and suggest that amiloride-sensitive Na+ transport across the apical membrane of the mammalian urinary bladder epithelium is mediated primarily by ENaC.


2004 ◽  
Vol 171 (4S) ◽  
pp. 251-251
Author(s):  
Kazunori Hattori ◽  
Katsuyuki Iida ◽  
Akira Johraku ◽  
Sadamu Tsukamoto ◽  
Taeko Asano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document