Inhibition of mobility of cell-surface receptors by factors which mediate specific cell–cell interactions

Nature ◽  
1975 ◽  
Vol 256 (5516) ◽  
pp. 416-417 ◽  
Author(s):  
JIM MCDONOUGH ◽  
JACK LILIEN
1991 ◽  
Vol 11 (10) ◽  
pp. 5251-5258
Author(s):  
B Zanolari ◽  
H Riezman

The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.


1983 ◽  
Vol 71 (5) ◽  
pp. 1431-1441 ◽  
Author(s):  
F Krempler ◽  
G M Kostner ◽  
A Roscher ◽  
F Haslauer ◽  
K Bolzano ◽  
...  

1998 ◽  
Vol 1 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Livio Mallucci ◽  
Valerie Wells

βGBP is a novel physiological negative growth regulator of the cell and a cytostatic factor.It is secreted by cells, and bybinding with high affinity to specific cell surface receptors. In normal cell surface receptors. In normal cells, βGBP physiologically controls transition from G0to G1and passage from late S phase to G2by modulating signalling cascades activated by tyrosine Kinase receptors and by affecting transcription events.As a cytostatic Factor βGBP has a marked growth inhibitory effect on a variety of tumours including leukaemias where growth arrest is followed by the activation of apoptotic pathways and cell death.


2002 ◽  
Vol 76 (9) ◽  
pp. 4559-4566 ◽  
Author(s):  
Martin U. Ried ◽  
Anne Girod ◽  
Kristin Leike ◽  
Hildegard Büning ◽  
Michael Hallek

ABSTRACT Recombinant adeno-associated virus type 2 (rAAV2) is a promising vector for human somatic gene therapy. However, its broad host range is a disadvantage for some applications, because it reduces the specificity of the gene transfer. To overcome this limitation, we sought to create a versatile rAAV vector targeting system which would allow us to redirect rAAV binding to specific cell surface receptors by simple coupling of different ligands to its capsid. For this purpose, an immunoglobulin G (IgG) binding domain of protein A, Z34C, was inserted into the AAV2 capsid at amino acid position 587. The resulting AAV2-Z34C mutants could be packaged and purified to high titers and bound to IgG molecules. rAAV2-Z34C vectors coupled to antibodies against CD29 (β1-integrin), CD117 (c-kit receptor), and CXCR4 specifically transduced distinct human hematopoietic cell lines. In marked contrast, no transduction was seen in the absence of antibodies or in the presence of specific blocking reagents. These results demonstrate for the first time that an immunoglobulin binding domain can be inserted into the AAV2 capsid and coupled to various antibodies, which mediate the retargeting of rAAV vectors to specific cell surface receptors.


1991 ◽  
Vol 11 (10) ◽  
pp. 5251-5258 ◽  
Author(s):  
B Zanolari ◽  
H Riezman

The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Stefan Brückner ◽  
Rajib Schubert ◽  
Timo Kraushaar ◽  
Raimo Hartmann ◽  
Daniel Hoffmann ◽  
...  

Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms. We find that Flo11A domains from diverse yeast species confer remarkably strong adhesion forces by establishing homotypic interactions between single cells, leading to efficient cell aggregation and biofilm formation in homogenous populations. Heterotypic interactions between Flo11A domains from different yeast species or Saccharomyces cerevisiae strains confer weak adhesive forces and lead to efficient strain segregation in heterogenous populations, indicating that in social yeasts Flo11A-mediated cell adhesion is a major mechanism for kin discrimination at species and sub-species levels. These findings, together with our structure and mutation analysis of selected Flo11A domains, provide a rationale of how cell surface receptors have evolved in microorganisms to mediate kin discrimination.


2020 ◽  
Vol 7 (1) ◽  
pp. 143-165 ◽  
Author(s):  
Melanie Koehler ◽  
Martin Delguste ◽  
Christian Sieben ◽  
Laurent Gillet ◽  
David Alsteens

Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.


Sign in / Sign up

Export Citation Format

Share Document