Structure of the extended solar magnetic field and the sunspot cycle variation in cosmic ray intensity

Nature ◽  
1976 ◽  
Vol 262 (5571) ◽  
pp. 766-768 ◽  
Author(s):  
LEIF SVALGAARD ◽  
JOHN M. WILCOX
2003 ◽  
Vol 21 (6) ◽  
pp. 1275-1288 ◽  
Author(s):  
B. Heber ◽  
G. Sarri ◽  
G. Wibberenz ◽  
C. Paizis ◽  
P. Ferrando ◽  
...  

Abstract. Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago’s instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields)


2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


Antiquity ◽  
1963 ◽  
Vol 37 (147) ◽  
pp. 213-219 ◽  
Author(s):  
W. F. Libby

The first test of the accuracy of dates obtained by the radiocarbon technique was made by determining whether dates so obtained agreed with the historical dates for materials of known age (n. 1). The validity of the radiocarbon method continues to be an important question, especially in the light of the numerous results that have been accumulated and the greater precision of the technique during the past few years (n. 2).The radiocarbon content of the biosphere depends on three supposedly independent geophysical quantities: (i) the average cosmic ray intensity over a period of 8000 years (the average life of radiocarbon) as measured in our solar system but outside the earth's magnetic field (n. 1); (ii) the magnitude (but not the orientation, because of the relatively rapid mixing over the earth's surface) of the magnetic field in the vicinity of the earth, averaged over the same period (n. 1,3); and (iii) the degree of mixing of the oceans during the same period (n. 1). The question of the accuracy of radiocarbon dates therefore is of interest to geophysicists in general as well as to the archaeologists, geologists and historians who use the dates.Previous workers in this area (n. 1, 2) have reported some discrepancies, and it is the purpose here to consider the matter further.


Author(s):  
Dimitra Lingri ◽  
Helen Mavromichalaki ◽  
Anatoly V. Belov ◽  
Eugenia A. Eroshenko

Many previous studies have shown that before the beginning of a Forbush Decrease (FD) of the cosmic ray intensity, a precursor signal can be observed. All these surveys were focused on FDs that are associated with a sudden storm com- mencement (SSC). In this work we demonstrate that precursors could also be observed in events without a SSC that is determined by an abrupt increase of the interplanetary magnetic field. The type of precursory signals and their diversity among the events are the main purpose of this study. We try to figure out similarities and differences on the signals and the associated events from both categories in the last fifty years, from 1969 to 2019, using the same selection criteria of the under investigation FDs. Simultaneously the orientation of the upcoming solar disturbances in comparison to the way they configure the increase of the interplanetary magnetic field and create these signals are discussed.


Author(s):  
Fraser Baird ◽  
Alexander MacKinnon

For the first time, based on the experimental data of AMS-02, a three-parameter spectrum of variations of ga - lactic cosmic rays was obtained in the range of rigidity 1- 20 GV, to which neutron monitors are most sensitive. It was found that during the period of negative polarity of the solar magnetic field, a power-law spectrum of va - riations is observed with a strong exponential decay in the region of high rigidity. When the polarity changes to positive at the beginning of the new 24th solar cycle, the spectrum of cosmic ray variations becomes purely po- wer-law. The transition to the experimentally obtained spectrum of variations will make it possible to remove a number of uncertainties and increase the accuracy of the analysis of data from the ground network of detectors. This will make it possible to retrospectively obtain fluxes of galactic protons with an average monthly resolution for the period of the space era based on ground-based monitoring.


Solar Physics ◽  
2019 ◽  
Vol 294 (9) ◽  
Author(s):  
G. N. Kichigin ◽  
M. V. Kravtsova ◽  
V. E. Sdobnov

At the present time there is no generally accepted evidence for any statistically significant anisotropy in the energy range 1017-1019 eV. The upper limits on the possible anisotropy provide strong evidence that these particles are extra-galactic. In that part of the cosmic-ray magnetic rigidity spectrum below ca . 2 x 1011 V the interplanetary magnetic field effectively prevents the detection of anisotropies in interstellar space and the only isotropies measured are associated with the solar wind and its associated magnetic field. In the range of magnetic rigidities extending from 1011 to 1012 V the cosmic-ray intensity shows evidence for a small anisotropy of about 2 x 10~4 which can be explained as the result of solar motion relative to the average galactic rotation in our neighbourhood. When this is removed the residual deviations from the mean intensity preclude any systematic sinusoidal variation greater than 2 x 10~4. This high degree of isotropy is most easily understood if these particles are members of an extra-galactic population and it is suggested that this extra-galactic component predominates from the highest cosmic-ray energies down the spectrum at least as far as ca . 1011 V rigidity.


Sign in / Sign up

Export Citation Format

Share Document