Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms

10.1038/90282 ◽  
2001 ◽  
Vol 19 (7) ◽  
pp. 668-672 ◽  
Author(s):  
Daniel J. Moellenbeck ◽  
Melvin L. Peters ◽  
James W. Bing ◽  
James R. Rouse ◽  
Laura S. Higgins ◽  
...  
2006 ◽  
Vol 99 (3) ◽  
pp. 927-930 ◽  
Author(s):  
Timothy M. Nowatzki ◽  
Xuguo Zhou ◽  
Lance J. Meinke ◽  
Ty Vaughn ◽  
Blair D. Siegfried

Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 440 ◽  
Author(s):  
Jianxun Geng ◽  
Jian Jiang ◽  
Changlong Shu ◽  
Zeyu Wang ◽  
Fuping Song ◽  
...  

Bacillus thuringiensis is a well-known entomopathogenic bacterium that produces vegetative insecticidal proteins (Vips, including Vip1, Vip2, Vip3, and Vip4) during the vegetative phase. Here, we purified Vip1 and Vip2 from B. thuringiensis and characterized the insecticidal effects of these protoxins. Bioassay results showed that a 1:1 mixture of Vip1Ad and Vip2Ag, purified by ion-affinity chromatography independently, exhibited insecticidal activity against Holotrichia parallela larvae, with a 50% lethal concentration value of 2.33 μg/g soil. The brush border membrane (BBM) in the midgut of H. parallela larvae was destroyed after feeding the Vip1Ad and Vip2Ag mixture. Vacuolization of the cytoplasm and slight destruction of BBM were detected with Vip2Ag alone, but not with Vip1Ad alone. Notably, Vip1Ad bound to BBM vesicles (BBMVs) strongly, whereas Vip2Ag showed weak binding; however, binding of Vip2Ag to BBMV was increased when Vip1Ad was added. Ligand blotting showed that Vip2Ag did not bind to Vip1Ad but bound to Vip1Ad-t (Vip1Ad was activated by trypsin), suggesting the activation of Vip1Ad was important for their binary toxicity. Thus, our findings suggested that Vip1Ad may facilitate the binding of Vip2Ag to BBMVs, providing a basis for studies of the insecticidal mechanisms of Vip1Ad and Vip2Ag.


2005 ◽  
Vol 71 (4) ◽  
pp. 1765-1774 ◽  
Author(s):  
H. Ernest Schnepf ◽  
Stacey Lee ◽  
JoAnna Dojillo ◽  
Paula Burmeister ◽  
Kristin Fencil ◽  
...  

ABSTRACT Bacillus thuringiensis crystal proteins of the Cry34 and Cry35 classes function as binary toxins showing activity on the western corn rootworm, Diabrotica virgifera virgifera LeConte. We surveyed 6,499 B. thuringiensis isolates by hybridization for sequences related to cry35A genes, identifying 78 strains. Proteins of the appropriate molecular mass (ca. 44 kDa) for Cry35 were observed in 42 of the strains. Full-length, or nearly full-length, sequences of 34 cry34 genes and 16 cry35 genes were also obtained from cloning, PCR analysis, and DNA sequencing. These included representatives of all known Cry34A, Cry34B, Cry35A, and Cry35B classes, as well as a novel Cry34A/Cry35A-like pair. Bioassay analysis indicated that cry35-hybridizing strains not producing a ca. 14-kDa protein, indicative of Cry34, were not active on corn rootworms, and that the previously identified Cry34A/Cry35A pairs were more active than the Cry34B/Cry35B pairs. The cry35-hybridizing B. thuringiensis strains were found in locales and materials typical for other B. thuringiensis strains. Comparison of the sequences with the geographic origins of the strains showed that identical, or nearly identical, sequences were found in strains from both Australasia and the Americas. Sequence similarity searches revealed that Cry34 proteins are similar to predicted proteins in Photorhabdus luminescens and Dictyostelium discoidium, and that Cry35Ab1 contains a segment similar to beta-trefoil domains that may be a binding motif. The binary Cry34/Cry35 B. thuringiensis crystal proteins thus appear closely related to each other, are environmentally ubiquitous, and share sequence similarities consistent with activity through membrane disruption in target organisms.


2011 ◽  
Vol 40 (6) ◽  
pp. 1417-1426 ◽  
Author(s):  
Joseph P. Iburg ◽  
Elmer W. Gray ◽  
Roger D. Wyatt ◽  
Julia E. Cox ◽  
Robert A. Fusco ◽  
...  

2018 ◽  
Vol 66 (17) ◽  
pp. 4336-4344 ◽  
Author(s):  
Yan-Jie Gao ◽  
Hao-Jun Zhu ◽  
Yi Chen ◽  
Yun-He Li ◽  
Yu-Fa Peng ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 274 ◽  
Author(s):  
Ensi Shao ◽  
Aishan Zhang ◽  
Yaqi Yan ◽  
Yaomin Wang ◽  
Xinyi Jia ◽  
...  

Bacillus thuringiensis (Bt) Vip3A proteins are important insecticidal proteins used for control of lepidopteran insects. However, the mode of action of Vip3A toxin is still unclear. In this study, the amino acid residue S164 in Vip3Aa was identified to be critical for the toxicity in Spodoptera litura. Results from substitution mutations of the S164 indicate that the insecticidal activity of Vip3Aa correlated with the formation of a >240 kDa complex of the toxin upon proteolytic activation. The >240 kDa complex was found to be composed of the 19 kDa and the 65 kDa fragments of Vip3Aa. Substitution of the S164 in Vip3Aa protein with Ala or Pro resulted in loss of the >240 kDa complex and loss of toxicity in Spodoptera litura. In contrast, substitution of S164 with Thr did not affect the >240 kDa complex formation, and the toxicity of the mutant was only reduced by 35%. Therefore, the results from this study indicated that formation of the >240 kDa complex correlates with the toxicity of Vip3Aa in insects and the residue S164 is important for the formation of the complex.


2009 ◽  
Vol 75 (12) ◽  
pp. 3937-3943 ◽  
Author(s):  
Michael Meissle ◽  
Christina Pilz ◽  
Jörg Romeis

ABSTRACT Genetically engineered maize producing the insecticidal protein Cry3Bb1 from Bacillus thuringiensis (Bt maize) is protected against corn rootworms (Diabrotica spp.), which are serious maize pests in North America and Europe. The aim of the present study was to investigate the interaction of Bt maize (event MON88017) and the entomopathogenic fungus Metarhizium anisopliae for controlling the western corn rootworm, Diabrotica virgifera virgifera. Exposure to Cry3Bb1 expressed in Bt maize seedlings resulted in decreased weight gain in D. v. virgifera larvae but did not influence susceptibility to M. anisopliae. Adult beetles were not affected by Cry3Bb1 in their food, but mortality when feeding on maize leaves was higher than when feeding on silk. Adults were more susceptible to the fungus than larvae. The results indicate that the effects of Bt maize and M. anisopliae on D. v. virgifera are additive and that Bt maize does not interfere with the biological control provided by entomopathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document