scholarly journals Autocrine motility factor/phosphoglucose isomerase regulates ER stress and cell death through control of ER calcium release

2011 ◽  
Vol 18 (6) ◽  
pp. 1057-1070 ◽  
Author(s):  
M Fu ◽  
L Li ◽  
T Albrecht ◽  
J D Johnson ◽  
L D Kojic ◽  
...  
2021 ◽  
Author(s):  
Lea Jabbour ◽  
Trang Nguyen ◽  
Rudy Gadet ◽  
Olivier Lohez ◽  
Ivan Mikaelian ◽  
...  

AbstractApoptosis plays a role in cell homeostasis in both normal development and disease. Bcl-xL, a member of the Bcl-2 family of proteins, regulates the intrinsic mitochondrial pathway of apoptosis. It is overexpressed in several cancers. Bcl-xL has a dual subcellular localization and is found at the mitochondria as well as the endoplasmic reticulum (ER). However, the biological significance of its ER localization is unclear. In order to decipher the functional contributions of the mitochondrial and reticular pools of Bcl-xL, we generated genetically modified mice expressing exclusively Bcl-xL at the ER, referred to as ER-xL, or the mitochondria, referred to as Mt-xL. By performing cell death assays, we showed that ER-xL MEFs show increased vulnerability to apoptotic stimuli but are more resistant to ER stress. Furthermore, ER-xL MEFs demonstrated a reduced expression of the Unfolded Protein Response (UPR) markers upon ER stress and displayed reduced inositol trisphosphate receptor (IP3R)-mediated ER calcium release. Collectively, our data show that upon ER stress, Bcl-xL negatively regulates IP3R-mediated calcium flux from the ER, which prevents ER calcium depletion and maintains the UPR and subsequent cell death in check. This work reveals a moonlighting function of Bcl-xL at the ER, apart from its cliché regulation of apoptosis.


2015 ◽  
Vol 2 ◽  
pp. 14-22 ◽  
Author(s):  
Hua-Yang Lin ◽  
Jyung-Hurng Liu ◽  
Ka-Lik Cheng ◽  
Jia-Yun Lin ◽  
Ni-Rung Liu ◽  
...  

2019 ◽  
Author(s):  
Francisco José Sala de Oyanguren ◽  
Nathan E. Rainey ◽  
Aoula Moustapha ◽  
Ana Saric ◽  
Franck Sureau ◽  
...  

Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effects of curcumin is still unclear. Since there is a consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of many natural compounds, we investigated by Amnis®Imaging flow cytometry the mechanistic aspects of curcumin’s destabilization of the ER, but also the status of the lysosomal compartment involved in curcumin-associated apoptosis. Curcumin induces ER stress thereby causing an unfolded protein response (UPR) and calcium release which destabilize the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization and activation of caspase-8, mediated by activation of cathepsins and calpains. We previously showed that sequence lead to the generation of truncated tBid and disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death that still needs to be studied in more detail. It has been suggested that it may be possible to exploit autophagy for cancer therapy. There is a complex interplay involving early autophagy as soon as mitochondria produce superoxide anions and hydrogen peroxide. Treatments with 10 µM to 20 µM curcumin induce autophagosome formation, while only early events of cell death are detectable.In the present study, curcumin-induced autophagy failed to rescue all cells since most cells underwent type II cell death following initial autophagic processes. However, a small number of cells blocked in the cell cycle escaped and were rescued to give rise to a novel proliferation phase.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 361 ◽  
Author(s):  
Francisco J. Sala de Oyanguren ◽  
Nathan E. Rainey ◽  
Aoula Moustapha ◽  
Ana Saric ◽  
Franck Sureau ◽  
...  

Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effect of curcumin is still unclear. Since there is a recent consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of natural compounds, we have investigated using Image flow cytometry the mechanistic aspects of curcumin’s destabilization of the ER, but also the status of the lysosomal compartment. Curcumin induces ER stress, thereby causing an unfolded protein response and calcium release, which destabilizes the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization that occurs later together with an activation of caspase-8, mediated by cathepsins and calpains that ended in the disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death. In the present study, curcumin-induced autophagy failed to rescue all cells that underwent type II cell death following initial autophagic processes. However, a small number of cells were rescued (successful autophagy) to give rise to a novel proliferation phase.


2005 ◽  
Vol 280 (11) ◽  
pp. 10419-10426 ◽  
Author(s):  
Takashi Yanagawa ◽  
Tatsuyoshi Funasaka ◽  
Soichi Tsutsumi ◽  
Tirza Raz ◽  
Nobutada Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document