scholarly journals Erratum: Corrigendum: Toll-like receptor-2 has a critical role in periodontal pathogen-induced myocardial fibrosis in the pressure-overloaded murine hearts

2017 ◽  
Vol 40 (2) ◽  
pp. 212-212
Author(s):  
Makoto Kaneko ◽  
Jun-ichi Suzuki ◽  
Norio Aoyama ◽  
Ryo Watanabe ◽  
Asuka Yoshida ◽  
...  

2016 ◽  
Vol 40 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Makoto Kaneko ◽  
Jun-ichi Suzuki ◽  
Norio Aoyama ◽  
Ryo Watanabe ◽  
Asuka Yoshida ◽  
...  


2008 ◽  
Vol 196 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Xinyan Liu ◽  
Takashi Ukai ◽  
Hiromichi Yumoto ◽  
Michael Davey ◽  
Sulip Goswami ◽  
...  


2019 ◽  
Vol 156 (6) ◽  
pp. S-247
Author(s):  
Yun Han Kwon ◽  
Huaqing Wang ◽  
Varun Dewan ◽  
Saad Syed ◽  
Michelle E. Fontes ◽  
...  




2001 ◽  
Vol 69 (3) ◽  
pp. 1477-1482 ◽  
Author(s):  
Matthew Hirschfeld ◽  
Janis J. Weis ◽  
Vladimir Toshchakov ◽  
Cindy A. Salkowski ◽  
M. Joshua Cody ◽  
...  

ABSTRACT Lipopolysaccharide (LPS) derived from the periodontal pathogenPorphyromonas gingivalis has been reported to differ structurally and functionally from enterobacterial LPS. These studies demonstrate that in contrast to protein-free enterobacterial LPS, a similarly purified preparation of P. gingivalis LPS exhibited potent Toll-like receptor 2 (TLR2), rather than TLR4, agonist activity to elicit gene expression and cytokine secretion in murine macrophages and transfectants. More importantly, TLR2 stimulation by this P. gingivalis LPS preparation resulted in differential expression of a panel of genes that are normally induced in murine macrophages by Escherichia coli LPS. These data suggest that (i) P. gingivalis LPS does not signal through TLR4 and (ii) signaling through TLR2 and through TLR4 differs quantitatively and qualitatively. Our data support the hypothesis that the shared signaling pathways elicited by TLR2 and by TLR4 agonists must diverge in order to account for the distinct patterns of inflammatory gene expression.



2010 ◽  
Vol 38 (5) ◽  
pp. 1335-1342 ◽  
Author(s):  
Lin Zou ◽  
Yan Feng ◽  
Yu-Jung Chen ◽  
Rui Si ◽  
Shiqian Shen ◽  
...  


2013 ◽  
Vol 81 (9) ◽  
pp. 3479-3489 ◽  
Author(s):  
Robert B. Clark ◽  
Jorge L. Cervantes ◽  
Mark W. Maciejewski ◽  
Vahid Farrokhi ◽  
Reza Nemati ◽  
...  

ABSTRACTThe total cellular lipids ofPorphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids ofP. gingivalisand define which lipid classes account for the TLR2 engagement, based on bothin vitrohuman cell assays andin vivostudies in mice. Specific serine-containing lipids ofP. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods.In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/−mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced byP. gingivalisthat likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate.



2009 ◽  
Vol 77 (10) ◽  
pp. 4414-4420 ◽  
Author(s):  
Koki Haruyama ◽  
Atsutoshi Yoshimura ◽  
Mariko Naito ◽  
Mami Kishimoto ◽  
Mikio Shoji ◽  
...  

ABSTRACT Porphyromonas gingivalis is a major periodontal pathogen that has the pathogenic proteinases Arg-specific gingipain and Lys-specific gingipain. We previously found that a cell surface component on P. gingivalis is able to induce Toll-like receptor 2 (TLR2)- and TLR4-independent signaling in 7.19 cells and that this component can be degraded by gingipains. In this study, we purified this component from the P. gingivalis gingipain-null mutant KDP136 and obtained two candidate proteins. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis showed that the proteins, with molecular masses of 123 and 43 kDa, were encoded by PGN_0748 and PGN_0728 (pgm6), respectively, in the P. gingivalis ATCC 33277 genome sequence. The PGN_0748-encoded protein, which we refer to as gingipain-sensitive ligand A (GslA), reacted with antiserum that could effectively inhibit the activity of KDP136 to induce NF-κB activation in 7.19 cells, but Pgm6 did not. To further determine what protein is responsible for the NF-κB activation, we constructed gslA, pgm6, and pgm6 pgm7 deletion mutants from KDP136. When 7.19 cells were exposed to those mutants, the gslA deletion mutant did not induce NF-κB activation, whereas the pgm6 and pgm6 pgm7 deletion mutants did. Furthermore, NF-κB activation in 7.19 cells induced by KDP136 was partially inhibited by antiserum against a recombinant protein expressed from the 5′-terminal third of gslA. These results indicate that GslA is one of the factors that induce NF-κB activation in 7.19 cells. Interestingly, the gslA gene was present in four of seven P. gingivalis strains tested. This restricted distribution might be associated with the virulence potential of each strain.



2007 ◽  
Vol 282 (20) ◽  
pp. 14975-14983 ◽  
Author(s):  
Donghoon Kim ◽  
Myung Ah Kim ◽  
Ik-Hyun Cho ◽  
Mi Sun Kim ◽  
Soojin Lee ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document