Expression of natural killer (NK) cell-specific alloantigens on a mouse NK-like cell line

1989 ◽  
Vol 67 (4) ◽  
pp. 239-242 ◽  
Author(s):  
YC Smart ◽  
KL Stevenson ◽  
RF Thorne ◽  
WD Thomas ◽  
LH Hsu ◽  
...  
Keyword(s):  
Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3824-3833 ◽  
Author(s):  
Bartosz Grzywacz ◽  
Nandini Kataria ◽  
Magdalena Sikora ◽  
Robert A. Oostendorp ◽  
Elaine A. Dzierzak ◽  
...  

AbstractThe stages of human natural killer (NK) cell differentiation are not well established. Culturing CD34+ progenitors with interleukin 7 (IL-7), IL-15, stem cell factor (SCF), FLT-3L, and murine fetal liver cell line (EL08.1D2), we identified 2 nonoverlapping subsets of differentiating CD56+ cells based on CD117 and CD94 (CD117highCD94– and CD117low/–CD94+ cells). Both populations expressed CD161 and NKp44, but differed with respect to NKp30, NKp46, NKG2A, NKG2C, NKG2D, CD8, CD16, and KIR. Only the CD117low/– CD94+ population displayed cytotoxicity and interferon-γ production. Both populations arose from a single CD34+CD38– Lin– cell and their percentages changed over time in a reciprocal fashion, with CD117highCD94– cells predominating early and decreasing due to an increase of the CD117low/–CD94+ population. These 2 subsets represent distinct stages of NKcell differentiation, since purified CD117high CD94– cells give rise to CD117low/–CD94+ cells. The stromal cell line (EL08.1D2) facilitated the transition from CD117highCD94– to CD117low/–CD94+ via an intermediate phenotype (CD117lowCD94low/–). EL08.1D2 also maintained the mature phenotype, preventing the reversion of CD117low/–CD94+ cells to the intermediate (CD117lowCD94low/–) phenotype. An analogous population of CD56+CD117highCD94– cells was found in cord blood. The identified stages of NK-cell differentiation provide evidence for coordinated acquisition of HLA-specific inhibitory receptors (ie, CD94/NKG2A) and function in developing human NK cells.


Blood ◽  
1986 ◽  
Vol 67 (4) ◽  
pp. 925-930 ◽  
Author(s):  
LA Fernandez ◽  
B Pope ◽  
C Lee ◽  
E Zayed

Abstract There have been many reports of cases in which chronic increases in the numbers of natural killer (NK) cells have been reported. Whether this is reactive or neoplastic in nature has been debated. We report the first case of an aggressive NK cell leukemia in an adult with establishment of an NK cell line. A 70-year-old man had two spontaneous episodes of jejunal perforation and one month later developed a severe febrile illness with moderate splenomegaly. Hemoglobin was 13.1 g/L, and WBC count was 1.8 X 10(9)/L with 2% large granular lymphocytes (LGLs). Platelet count was 143 X 10(9)/L; prothrombin time (PT) and partial thromboplastin time (PTT) were normal. Bone marrow was infiltrated with 25% to 30% LGLs; serum lysozyme was normal. Serum LDH was initially 1,191 U/L and rose to 6,408 (normal 240 to 525 U/L). Ten days later, the WBC count increased to 99.9 X 10(9)/L with 70% LGL cells; the PT and PTT increased, and the platelet count dropped. No bacterial or viral cause of fever was identified. The cells from peripheral blood were LGLs that stained positively for acid phosphatase. All of the LGLs reacted with a monoclonal antibody reactive with NK cells (LEU-11b). Functionally, the patient's peripheral blood mononuclear cells (PBMs) demonstrated 100 times more lytic activity against K562 tumor cell lines than did normal PBMs. The patient's PBMs were propagated in vitro. The cultured cells showed the morphological, cytochemical, immunological, and functional characteristics of NK cells. In addition, partial trisomy involving chromosome 1 q with duplication in regions of q21 through q31 was observed in all metaphases analyzed. The extra chromosome 1q with duplication in regions q21 through q31 was translocated to the p- terminal of chromosome 5. One percent to 5% of normal PBMs comprise NK cells; in most cases, leukemias arise from normal phenotypic counterparts. This case demonstrated that aggressive NK cell leukemia may occur in adults. In addition, the chromosomal abnormalities suggest that this is not a reactive process but a malignancy.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1374-1383 ◽  
Author(s):  
Junjiro Tsuchiyama ◽  
Tadashi Yoshino ◽  
Masaharu Mori ◽  
Eisaku Kondoh ◽  
Takeshi Oka ◽  
...  

A novel cell line was established from a patient with a leukemic-state nasal angiocentric natural killer (NK) cell lymphoma with systemic skin infiltration. The morphology of the leukemic cells was large-granular-lymphocyte (LGL), and their immunophenotype was CD2+, CD3−, CD5+, CD7+, CD16−, CD56+, and CD57−. The presence of Epstein-Barr viral (EBV) genome was shown in specimens from the patient’s nose, skin, and peripheral blood by in situ hybridization using an EBV-encoded small RNA-1 probe or by Southern blotting using a terminal-repeat probe of the EBV genome. Leukemic cells were cocultured with a mouse stromal cell line (SPY3-2) in the presence of 100 U/mL recombinant human interleukin-2 and a novel stromal cell-independent cell line, NK-YS, was established. The NK-YS cells showed LGL morphology and expressed surface CD2, CD5, CD7, CD25, CD56, and CD95. The NK-YS cells retained cytotoxicity against K562 and Jurkat cells. A Southern blotting using a terminal-repeat probe of EBV showed that NK-YS and fresh leukemic cells had a clonal EBV genome, whereas the T-cell receptor β and γ chain genes of NK-YS were not rearranged. In an immunocytochemical analysis, the NK-YS cells showed a type-II latent infection of EBV. The NK-YS cells preserved the original characteristics of NK cell lymphoma/leukemia and will be a useful tool for the study of biological characteristics of EBV-associated nasal angiocentric NK cell lymphoma/leukemia. © 1998 by The American Society of Hematology.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3436-3436
Author(s):  
Fanqi Bai ◽  
Jeffrey S. Painter ◽  
Cantor Alan ◽  
Zou JianXiang ◽  
Sheng Wei ◽  
...  

Abstract Natural Killer (NK) function in patients with MDS as measured by non-MHC-restricted cytotoxicity and activation-dependent cell cytotoxicity (ADCC) are reduced in patients with MDS, however, the mechanisms of the functional impairment are not known. Tumor cytolysis occurs through orchestrated control by inhibitory NK receptors (NKRs) and activating NKRs, which control signaling events that lead to polarized movement of perforin-containing granules toward the NK-tumor contact area. We found that NK cells from 23 out of 35 patients with MDS (66%) displayed reduced lysis of K562 tumor cells compared to age-matched normal controls (p<0.01). To better characterize this defect, we evaluated patient NK function against differential tumor targets including the MDS1 cell line established from an MDS patients. We found that MDS1 incited non-MHC-restricted lysis. Unactivated PBMCs, unactivated NK cells, NK cell lines (NK92 and NKL) but not purified unactivated T cells from normal donors killed MDS1 in 4-hr 51Cr-release assays. Normal NK cells and NK cell lines were also found to rapidly redistrubute perforin granules after exposure to MDS1suggesting that a perforin-dependent lytic pathway was activated. We then performed simultaneous cytolytic assays with K562, MDS1, and the 721.221 B cell lymphoma cell line as target cells. We found that NK cells from MDS patients had greater lytic activity against MDS1 (average 24% vs. average 8% at 50:1 Effector:Target ratio, respectively, p<0.01) Antibody-blocking experiments demonstrated that the NKL cell line and PBMCs from 8 out of 10 MDS patients predominantly used the NKG2D activating receptor to kill MDS1. Consistent with this finding, we showed that MDS1 cells express the major human stress-inducible endogenous proteins MICA and MICB, which are NKG2D ligands. In contast, lysis by NK92 cells and normal PBMCs was not appreciably reduced by NKG2D blocking antibodies suggesting that other unidentified NKR(s) also mediate lysis. To identify the NKRs expressed in MDS patients, we performed immunophenotyping for both the activating NKRs and inhibitory NKRs compared to age-matched normal controls. We found that two activating receptors, NKp30 and CD244 (2B4), were significantly reduced on NK cells from all MDS patients regardless of their ability to lyse NK targets. Inhibitory NKR expression and function were normal. Interestingly, NKG2D expression correlated with reduced cytolytic function. Similar to studies on normal NK cells with low NKp30 and NKp46 (NCRdull) phenotypes, these results suggest that low NKp30 expression leads to predominant NKG2D utilization for tumor cell lysis, which is reduced in MDS patients with defective NK function. Our findings provide critical information about potential importance for immunosurviellance through NKG2D-NKG2D ligands.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2918-2918
Author(s):  
Tarun K. Garg ◽  
Junaid Khan ◽  
Susann Szmania ◽  
Amy D Greenway ◽  
Joshuah D Lingo ◽  
...  

Abstract Abstract 2918 Natural killer cells (NK) have the unique ability to kill target cells without priming. While their therapeutic potential against various malignancies is becoming more apparent, it has been restricted to the allogeneic setting; NK cells are inhibited by autologous targets by engaging killer immunoglobulin-like receptors with their ligands. Another major challenge to the clinical utility of NK cells is obtaining a sufficient number of NK cells for infusion. Co-culture of blood mononuclear cells (PBMNC) with the leukemic cell line K562, genetically modified to express membrane-bound IL15 and the co-stimulatory molecule 41BBL (K562mbIL15-41BBL) in the presence of IL2 results in robust expansion and activation of NK cells. To determine if NK cells derived from myeloma (MM) patients can be used therapeutically in the autologous setting, we explored the expansion of NK cells from MM patients, their gene expression profiles (GEP), and their ability to kill autologous and allogeneic MM cells from high-risk patients in vitro and in vivo, and compared these to NK cells from healthy donors (HD). PBMNC from MM patients (N=30) co-cultured with irradiated K562mbIL15-41BBL cells expanded a median of 351 fold (range20–10, 430), comparable to the expansion of HD-derived NK cells (N=15, median 803, range 127–1, 727; p=0.5). GEP of MM non-exp-NK differed from HD non-exp-NK in the expression of only one gene (PRKCi), underexpessed in MM (false discovery rate (FDR) <0.05, p-value <3×10−10). GEP of exp-NK cells from both MM patients and HD was very different from non-exp-NK cells (8 pairs each, 10, 639 differentially overexpressed and 26, 057 underexpressed probe sets, FDR <0.05). Genes associated with proliferation, cytolytic activity, activation, adhesion, migration and cell cycle regulation were highly up-regulated in exp-NK cells. Standard chromium release assays demonstrated that MM exp-NK cells killed both allogeneic and autologous primary MM cells more efficiently compared to non-exp-NK cells, via a perforin mediated mechanism. Blocking studies revealed that the natural cytotoxicity receptors, activating receptors, and DNAX accessory molecule (DNAM-1) played a central role in target cell lysis. The killing ability of MM patient and HD derived exp-NK cells was very similar against allogeneic targets, while primary MM targets were more resistant to killing by autologous exp-NK. The anti-MM activity of allogeneic and autologous exp-NK cells was further examined in vivo. NOD/SCID/IL2R γ-null mice were implanted subcutaneously with a human fetal bone, and primary MM cells or luciferase-transfected OPM2 MM cell line were engrafted into the bone. The tumor burden was determined by ELISA for human Ig and/or bio-imaging. The mice were randomized to control and exp-NK treatment groups. A total of 160 ×106 exp-NK cells, in 4 doses 48 hrs apart, were injected in the exp-NK treatment group via tail vein injection. The mice were administered 1000U of IL2 subcu daily to support the NK cells. The mice were bled on days 7, 14, 21 & 28 for the assessment of human Ig by ELISA and enumerating circulating NK cells by flow cytometry. Exp-NK treated mice had a significantly reduced MM burden by ELISA (p<0.04) on day 21, and exp-NK could be detected in the murine blood up to day 28 post-administration in both primary MM and OPM2 tumor bearing mice. The mice were sacrificed and the tumors were harvested after 4 weeks. A noticeable reduction in tumor burden in the exp-NK cell treated mice was confirmed by histology. NK cells were detected by immunohistochemistry (CD57 or CD16) in the hu-bone implants harvested 28 days after infusion. In conclusion, MM patient-derived NK cells have a similar expansion potential, and MM exp-NK cells have cytolytic activity against allogeneic targets similar to those of HD exp-NK cells, and somewhat reduced activity against autologous targets. These exp-NK cells have significant activity against the aggressive cell line OPM2 and high-risk autologous primary MM cells in vivo. Exp-NK cells trafficked to MM tumors and persisted in the myelomatous hu bone microenvironment for 4 weeks. The anti-MM activity of autologous exp-NK cells is exciting and avails a new therapeutic avenue for patients with GEP-defined high-risk disease. A phase II clinical trial of allogeneic and autologous exp-NK cell therapy for relapsed/refractory high-risk MM is in progress at our institution. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Erika Cretney ◽  
Mariapia A. Degli-Esposti ◽  
Eloise H. Densley ◽  
Helen E. Farrell ◽  
Nick J. Davis-Poynter ◽  
...  

Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2–deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell–mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell–mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2–activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3693-3693 ◽  
Author(s):  
Schickwann Tsai ◽  
H. Christopher Leukel ◽  
Chikako Morita ◽  
Marc J. Heikens ◽  
Thai M. Cao

Abstract We have recently established a continuous natural killer (NK) cell line, KIL (for Killer Lymphocyte), from a coculture of normal murine whole bone marrow (WBM) and the OP-9 stromal cell line expressing the Notch ligand, Jagged2, in the presence of stem cell factor and IL-7 (Dehart et al. Blood2005;105:3521). A clonal prototype, KIL C.2, was derived from a C57BL/6 mouse and has the CD3−NK1.1+CD122+ phenotype, expresses the NKG2D activating receptor, and proliferates extensively upon in vitro stimulation with IL-2 (20ng/ml). We now show that KIL C.2 stimulated with IL-2 for 48 hours produce large quantities of interferon-gamma (10,300 ± 1850 pg/ml) and modest amounts of tumor necrosis factor-alpha (200 ± 60 pg/ml). IL-4 and IL-10 secretion was below background levels. We then evaluated the cytolytic potential of KIL C.2 using a FACS-based flourolysis assay using GFP-labeled target cells. We observed that KIL C.2 potently lyse allogeneic A20 (H2d) lymphoma tumor targets without prior activation. In addition, KIL C.2 is moderately lytic against two syngeneic (H2b) targets: a myeloma cell line, 5T33MM, and BLL C.2, a tumorigenic leukemia/lymphoma cell line that was established from a WBM culture and has the CD19+CD25+CD43+sIg− pre-B-cell phenotype (S.T. and T.M.C., unpublished data). To study the mechanism of cytolysis we performed killing assays in the presence of anti-NKG2D (MI-6) or anti-NK1.1 (PK136) blocking antibodies. Blockade of either NK1.1 or NKG2D reduced cytotoxicity against BLL C.2 targets by 50%. BLL C.2 has the C57BL/6 background, thus does not express H60 but expresses the other NKG2D ligands Rae1 at high levels and Mult1 at moderate levels as determined by quantitative RT-PCR. In contrast, blocking NK1.1 and NKG2D had no effect on cytolysis of A20 suggesting the presence of alternative activation pathways such as those mediated by MHC class I alloantigen receptors. To examine the in vivo tumoricidal potential of KIL C.2, we used a C57BL/6 → BALB/c T-cell depleted (TCD)-WBM transplantation and A20-luciferase tumor model and monitored tumor progression using the Xenogen bioluminescence imaging system. BALB/c mice lethally irradiated and rescued with 2.5 × 107 TCD-WBM along with A20-luciferase inoculation uniformly died from tumor. Mice given TCD-WBM and 1 × 106 donor splenocytes did not develop tumor but died from lethal graft-versus-host disease (GVHD). In contrast, mice given TCD-WBM and two injections of KIL C.2 at doses of 1 × 107 per mouse were protected from tumor progression without developing signs of GVHD. These results show that KIL C.2 is a highly functional NK cell line with the capacity for proliferation, cytokine secretion, and cytotoxicity against syngeneic as well as allogeneic tumors. As such, KIL C.2 provides a useful cell line model for studies of NK cell biology and suggests a potentially effective strategy for NK cell-based immunotherapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4714-4714 ◽  
Author(s):  
Su Su ◽  
Dawn M Betters ◽  
Muthalagu Ramanathan ◽  
Keyvan Keyvanfar ◽  
Aleah Smith ◽  
...  

Abstract Abstract 4714 The development of an efficient method to genetically modify natural killer (NK) cells could be used to characterize NK cell differentiation, acquisition of self-tolerance, tumor trafficking in vivo, as well as to manipulate NK cells to enhance their activity against infectious diseases and tumors. Although HIV-1 based lentiviral vectors (LVs) have been used to efficiently transfer genes into human T-cells, little data exists on LV transduction of either fresh or in vitro expanded human NK cells or its effects on NK cell phenotype and cytolytic function. In this study, we used an HIV-based LV expressing enhanced green fluorescence protein (EGFP) driven by a murine stem cell virus long terminal repeat (MSCV-LTR) promoter to transduce CD3− and CD56+ and/or CD16+ human NK cells that were either resting, IL-2 activated, or expanded in vitro using an irradiated EBV-LCL feeder cell line. We observed that resting NK cells were difficult to transduce with LVs, even at high multiplicities of infection (MOI), with transduction efficiencies (TE) in the range of only 3–14%. The efficiency of LV transduction improved when the NK cells were pre-stimulated in vitro with IL-2: TE improved to 21±0.2% in NK cells cultured for 24 hours in media containing IL-2 (200 U/mL) and 28.7±12.9% in NK cells that underwent in vitro expansion over 9 days prior to transduction using irradiated EBV-LCL feeder cells and media containing IL-2 (200U/mL). Subsequently, we evaluated incremental MOIs (3-200) to optimize LV transduction of expanded NK cells; optimal transduction was achieved using a spinoculation protocol at a MOI of 25 which resulted in the highest transduction efficiencies with the least amount of cell death. Increasing the MOI above this level resulted in a small increase in transduction, but was offset by an increase in NK cell apoptosis/death. Using a one-round, non-spinoculation protocol and an MOI of 30, we obtained a median transduction efficiency of 29% (range 16–41) with excellent retention of NK cell viability. This optimized protocol was used to transduce expanded NK cells with a LV vector encoding an shRNA targeting a region of the NK cell inhibitory receptor transcript NKG2A. Following transduction, surface expression of NKG2A decreased significantly on expanded NK cells compared to non-transduced expanded NK cells and “scramble transduced” LV controls; at a MOI of 10, the MFI of NKG2A on expanded human NK cells decreased 35% compared to non-transduced and LV transduced scramble controls (median MFI 428, 673, 659 in shRNA, non-transduced and scramble LV control transduced NK cells respectively). A comparison of transduction efficiencies using LVs expressing EGFP driven by MSCV-LTR, EF1a, and Ubi promoters showed MSCV-LTR mediated the highest level of gene expression in expanded NK cells. Transduced NK cells maintained stable EGFP transgene expression in vitro, which peaked 5 days following LV transduction and remained stable for an additional 9 days. The phenotype of lentiviral transduced NK cells was similar to non-transduced NK cells. Specifically, expression of CD56, CD16, granzyme A and B, perforin, the inhibitory receptors NKG2A, KIR3DL1, KIR3DL2, and KIR2DL1/DL2, and the activating receptors NKG2D, NCRs NKp46, and NKp30 were not altered in either fresh or expanded NK cells following LV transduction, although we did observe a significant reduction in NKp44 expression in LV transduced cells (22% compared to 50% on untransduced NK cells; 0.02). Furthermore, NK cell function, as assessed by cytokine production and cytotoxicity vs tumor targets was not altered in LV transduced NK cells. A 51Cr release cytotoxicity assay showed GFP+ NK cells, flow sorted following LV transduction of expanded NK cells, had similar cytotoxicity against K562 cells and human renal cell carcinoma cells (RCC) compared to non-transduced expanded NK cell controls (figures). In conclusion, we show that an HIV-1 based lentiviral vector driven by a MSCV-LTR, mediated efficient and stable gene transfer in IL-2 activated and in vitro expanded human NK cells. This study provides valuable insights for methods to optimize the long-term expression of LV transduced genes in human NK cells which could be used to improve their anti-tumor function in vivo. Target: K562 cells Target: RCC cell line Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document