Distribution of antigen specific memory T cells in lymph nodes after immunization at peripheral or mucosal sites

1996 ◽  
Vol 74 (3) ◽  
pp. 265-273 ◽  
Author(s):  
ROBERT R PREMIER ◽  
HELEN J JACOBS ◽  
MALCOLM R BRANDON ◽  
ELS NT MEEUSEN
2004 ◽  
Vol 78 (13) ◽  
pp. 7284-7287 ◽  
Author(s):  
Michaela Lucas ◽  
Cheryl L. Day ◽  
Jessica R. Wyer ◽  
Sharon L. Cunliffe ◽  
Andrew Loughry ◽  
...  

ABSTRACT Recent advances in class II tetramer staining technology have allowed reliable direct ex vivo visualization of antigen-specific CD4 T cells. In order to define the frequency and phenotype of a prototype response to a nonpersistent pathogen, we have used such techniques to analyze influenza virus-specific memory CD4 T cells directly from blood. These responses are stably detectable ex vivo at low frequencies (range, 0.00012 to 0.0061% of CD4 T cells) and display a distinct “central memory” CD62L+ phenotype.


2010 ◽  
Vol 71 ◽  
pp. S69
Author(s):  
Lloyd D'Orsogna ◽  
Ellen van der Meer-Prins ◽  
Pieter van der Pol ◽  
Marry Franke-van Dijk ◽  
Yvonne Zoet ◽  
...  

1988 ◽  
Vol 113 (2) ◽  
pp. 268-277 ◽  
Author(s):  
Zsuzsanna Tabi ◽  
Felicity Lynch ◽  
Rhodri Ceredig ◽  
Jane E. Allan ◽  
Peter C. Doherty

2008 ◽  
Vol 205 (11) ◽  
pp. 2561-2574 ◽  
Author(s):  
Alfonso Martín-Fontecha ◽  
Dirk Baumjohann ◽  
Greta Guarda ◽  
Andrea Reboldi ◽  
Miroslav Hons ◽  
...  

There is growing evidence that the maturation state of dendritic cells (DCs) is a critical parameter determining the balance between tolerance and immunity. We report that mouse CD4+ effector memory T (TEM) cells, but not naive or central memory T cells, constitutively expressed CD40L at levels sufficient to induce DC maturation in vitro and in vivo in the absence of antigenic stimulation. CD4+ TEM cells were excluded from resting lymph nodes but migrated in a CD62P-dependent fashion into reactive lymph nodes that were induced to express CD62P, in a transient or sustained fashion, on high endothelial venules. Trafficking of CD4+ TEM cells into chronic reactive lymph nodes maintained resident DCs in a mature state and promoted naive T cell responses and experimental autoimmune encephalomyelitis (EAE) to antigens administered in the absence of adjuvants. Antibodies to CD62P, which blocked CD4+ TEM cell migration into reactive lymph nodes, inhibited DC maturation, T cell priming, and induction of EAE. These results show that TEM cells can behave as endogenous adjuvants and suggest a mechanistic link between lymphocyte traffic in lymph nodes and induction of autoimmunity.


2004 ◽  
Vol 190 (9) ◽  
pp. 1692-1696 ◽  
Author(s):  
Helen Horton ◽  
Nina Russell ◽  
Erin Moore ◽  
Ian Frank ◽  
Ruth Baydo ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 3039-3050 ◽  
Author(s):  
Lili Yang ◽  
Yang Yu ◽  
Manorama Kalwani ◽  
Tai-Wei Joy Tseng ◽  
David Baltimore

Abstract Memory T cells (TMs) have been detected in many tissues but their quantitative distribution remains largely undefined. We show that in mice there is a remarkably biased accumulation of long-term CD4 TMs into mucosal sites (mainly gut, especially Peyer patches), and CD8 TMs into lymph nodes and spleen (in particular, peripheral lymph nodes [PLNs]). This distinction correlates with their differentiated expression of PLN- and gut-homing markers. CD8 and CD4 TMs selectively require the expression of PLN-homing marker CCR7 or gut-homing marker α4β7 for maintenance. PLNs and gut supply CD8 and CD4 TMs with their individually favored homeostatic cytokine, IL-15, or IL-7. Cytokine stimulation in turn regulates the different gut-homing marker expression on CD4 and CD8 TMs. IL-15 plays a major role in vivo regulating CD8 TMs homing to PLNs. Thus, the reservoir segregation of CD4 and CD8 TMs meets their individual needs for homeostatic cytokines and is under feedback control of cytokine stimulation.


2009 ◽  
Vol 20 (4) ◽  
pp. 238-242 ◽  
Author(s):  
Peter Nickel ◽  
Gantuja Bold ◽  
Franziska Presber ◽  
Didier Biti ◽  
Nina Babel ◽  
...  

2016 ◽  
Vol 90 (15) ◽  
pp. 6699-6708 ◽  
Author(s):  
Emily K. Cartwright ◽  
David Palesch ◽  
Maud Mavigner ◽  
Mirko Paiardini ◽  
Ann Chahroudi ◽  
...  

ABSTRACTTreatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+TSCMare preserved in number but show (i) a decrease in the frequency of CCR5+cells, (ii) an expansion of the fraction of proliferating Ki-67+cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+TSCMhomeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+CCR5+TSCMboth in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+Ki-67+TSCMin blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+TSCMand central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+TSCMhomeostasis, and the observed stable level of virus in TSCMsupports the hypothesis that these cells are a critical contributor to SIV persistence.IMPORTANCEUnderstanding the roles of various CD4+T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCMand TTM, respectively). CD4+TSCMare disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+TSCMhomeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTMand effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+TSCMduring suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir.


Sign in / Sign up

Export Citation Format

Share Document