scholarly journals CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming

2008 ◽  
Vol 205 (11) ◽  
pp. 2561-2574 ◽  
Author(s):  
Alfonso Martín-Fontecha ◽  
Dirk Baumjohann ◽  
Greta Guarda ◽  
Andrea Reboldi ◽  
Miroslav Hons ◽  
...  

There is growing evidence that the maturation state of dendritic cells (DCs) is a critical parameter determining the balance between tolerance and immunity. We report that mouse CD4+ effector memory T (TEM) cells, but not naive or central memory T cells, constitutively expressed CD40L at levels sufficient to induce DC maturation in vitro and in vivo in the absence of antigenic stimulation. CD4+ TEM cells were excluded from resting lymph nodes but migrated in a CD62P-dependent fashion into reactive lymph nodes that were induced to express CD62P, in a transient or sustained fashion, on high endothelial venules. Trafficking of CD4+ TEM cells into chronic reactive lymph nodes maintained resident DCs in a mature state and promoted naive T cell responses and experimental autoimmune encephalomyelitis (EAE) to antigens administered in the absence of adjuvants. Antibodies to CD62P, which blocked CD4+ TEM cell migration into reactive lymph nodes, inhibited DC maturation, T cell priming, and induction of EAE. These results show that TEM cells can behave as endogenous adjuvants and suggest a mechanistic link between lymphocyte traffic in lymph nodes and induction of autoimmunity.

2016 ◽  
Vol 90 (15) ◽  
pp. 6699-6708 ◽  
Author(s):  
Emily K. Cartwright ◽  
David Palesch ◽  
Maud Mavigner ◽  
Mirko Paiardini ◽  
Ann Chahroudi ◽  
...  

ABSTRACTTreatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+TSCMare preserved in number but show (i) a decrease in the frequency of CCR5+cells, (ii) an expansion of the fraction of proliferating Ki-67+cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+TSCMhomeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+CCR5+TSCMboth in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+Ki-67+TSCMin blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+TSCMand central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+TSCMhomeostasis, and the observed stable level of virus in TSCMsupports the hypothesis that these cells are a critical contributor to SIV persistence.IMPORTANCEUnderstanding the roles of various CD4+T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCMand TTM, respectively). CD4+TSCMare disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+TSCMhomeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTMand effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+TSCMduring suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir.


2011 ◽  
Vol 71 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Honorio Torres-Aguilar ◽  
Miri Blank ◽  
Shaye Kivity ◽  
Mudi Misgav ◽  
Jacob Luboshitz ◽  
...  

ObjectivesThe importance of β2-glycoprotein I (β2GPI)-specific CD4+ T cells in the development of pathogenic processes in patients with antiphospholipid syndrome (APS) and APS mouse models is well established. Therefore, our objective is to manipulate the β2GPI specific CD4+ T cells using tolerogenic dendritic cells (tDCs) to induce tolerance. We aim to evaluate the capability of tDCs to induce antigen-specific tolerance in effector/memory T cells from patients with APS and to elucidate the involved mechanism.MethodsDCs and tDCs were produced from patients with APS peripheral-blood-monocytes, using specific cytokines. β2GPI-specific tolerance induction was investigated by coculturing control DC (cDC) or tDC, β2GPI-loaded, with autologous effector/memory T cells, evaluating the proliferative response, phenotype, cytokines secretion, viability and regulatory T cells.ResultsHuman monocyte-derived DCs treated with interleukin (IL)-10 and transforming growth factor β-1 (10/TGF-DC) induced β2GPI-specific-unresponsiveness in effector/memory CD4+ T cells (46.5%±26.0 less proliferation) in 16 of 20 analysed patients with APS, without affecting the proliferative response to an unrelated candidin. In five analysed patients, 10/TGF-DC-stimulated T cells acquired an IL-2lowinterferon γlowIL-10high cytokine profile, with just a propensity to express higher numbers of Foxp3+CTLA-4+ cells, but with an evident suppressive ability. In four of 10 analysed patients, 10/TGF-DC-stimulated T cell hyporesponsiveness could not be reverted and showed higher percentages of late apoptosis, p<0.02.ConclusionsThe inherent tolerance induction resistance of activated T cells present during the development of autoimmune diseases has delayed the application of tDC as an alternative therapy. This study highlights the 10/TGF-DC feasibility to induce antigen-specific unresponsiveness in autoreactive T cells generated in patients with APS by inducing apoptosis or T cells with regulatory abilities.


2002 ◽  
Vol 195 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Daniel J. Campbell ◽  
Eugene C. Butcher

Effector and memory T cells can be subdivided based on their ability to traffic through peripheral tissues such as inflamed skin and intestinal lamina propria, a property controlled by expression of ‘tissue-specific’ adhesion and chemoattractant receptors. However, little is known about the development of these selectively homing T cell subsets, and it is unclear whether activation in cutaneous versus intestinal lymphoid organs directly results in effector/memory T cells that differentially express adhesion and chemoattracant receptors targeting them to the corresponding nonlymphoid site. We define two murine CD4+ effector/memory T cell subsets that preferentially localize in cutaneous or intestinal lymphoid organs by their reciprocal expression of the adhesion molecules P-selectin ligand (P-lig) and α4β7, respectively. We show that within 2 d of systemic immunization CD4+ T cells activated in cutaneous lymph nodes upregulate P-lig, and downregulate α4β7, while those responding to antigen in intestinal lymph nodes selectively express high levels of α4β7 and acquire responsiveness to the intestinal chemokine thymus-expressed chemokine (TECK). Thus, during an immune response, local microenvironments within cutaneous and intestinal secondary lymphoid organs differentially direct T cell expression of these adhesion and chemoattractant receptors, targeting the resulting effector T cells to the inflamed skin or intestinal lamina propria.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 233-233
Author(s):  
Kathryn N Wilkinson ◽  
Britt Anderson ◽  
Jennifer McNiff ◽  
Anthony Jake Demetris ◽  
Warren D. Shlomchik ◽  
...  

Abstract Abstract 233 Graft versus host disease (GVHD) remains a major cause of morbidity and mortality in allogeneic stem cell transplantation (alloSCT). In murine models of alloSCT, effector memory (EM) T cells engraft, respond to antigen, and mediate graft versus leukemia, but do not cause GVHD. There are three potential explanations for EM T cells' inability to cause GVHD. First, unlike naïve T cells, EM T cells fail to traffic to lymph nodes and Peyer patches, areas which may be important for initiation of GVHD. Second, a more-restricted T cell receptor repertoire in the EM T cell pool may lead to a reduced ability to recognize alloantigens. Third, it is possible that EM T cells do not possess the necessary effector mechanisms or are incapable of the proliferation or survival required for induction of GVHD. We recently reported that the inability to migrate to lymph nodes and Peyer patches is not responsible for the inability of EM T cells to cause GVHD (Anderson et al, Blood. 2008). To date, the role of repertoire has been difficult to test because in existing models of GVHD the disease causing T cells are undefined. Furthermore, whether central memory (CM) CD4 T cells are also incapable of causing GVHD remains unclear, in part because it has been difficult to isolate pure populations of polyclonal CM CD4 T cells. In order to concurrently address the role of repertoire and determine if CM CD4 T cells can cause GVHD, we developed a novel T cell receptor transgenic GVHD model. In this model naïve CD4+ TS1 T cells on a RAG-deficient background, which recognize an epitope of influenza hemagglutinin (HA), are transferred, along with syngeneic bone marrow, into irradiated transgenic recipients that express HA in all tissues (HA104 mice). Within a week post transplant, HA104 recipients of naïve TS1 cells developed a GVHD-like condition characterized by weight loss, visible wasting, and pathology of the skin, colon, and liver. An advantage of this model is that the disease causing T cells are defined, enabling us to determine if naïve and memory T cells of identical specificity have inherent differences in their ability to cause GVHD. We generated memory TS1 cells using in vitro stimulation followed by transfer into RAG−/− mice, according to Farber and colleagues (Ahmadzadeh et al. PNAS 2002). After 2 to 3 months, pure populations of CD62L+ CM TS1 cells and CD62L- EM TS1 cells were isolated by FACS. Upon transfer into irradiated HA104 recipients, EM TS1 cells initially did not cause disease symptoms, however, 30 days post transplant, EM TS1 recipients developed mild weight loss. These results indicate that repertoire differences are not responsible for the inability of EM T cells to cause GVHD. Interestingly, CM TS1 cells caused more weight loss than EM T cells, though not as much as that caused by naïve TS1 cells. These findings indicate that, independent of repertoire, CM T cells are also inherently limited in their ability to cause GVHD, though they are not as disabled in this respect as EM T cells. A major issue in GVHD work has been the inability to track, quantify and characterize the actual alloreactive GVHD-inducing T cells. With a TCR transgenic model, this is now possible and we are currently exploiting this feature to determine the fate of naïve, EM, and CM T cells after transfer. Initial experiments demonstrated that, in comparison to naïve and CM TS1 cell recipients, the secondary lymph nodes of EM TS1 cell recipients contained fewer TS1 cells 60 days post transplant, suggesting that in the context of GVHD, EM cells are inherently limited in their ability to expand or survive. We are currently tracking naïve, EM and CM TS1 cells throughout the course of a GVHD experiment, and assessing how, when, and where the fates of these cell types diverge. Results from these ongoing experiments will be presented. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 189 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Omid Akbari ◽  
Naveed Panjwani ◽  
Sylvie Garcia ◽  
Ricardo Tascon ◽  
Doug Lowrie ◽  
...  

The mechanisms underlying initiation and maintenance of CD4 T cell responses after DNA vaccination were studied using a construct coding for nonsecreted fifth component of complement (C5) protein, thus restricting the availability of antigen. The only cell types to express C5 were keratinocytes at the site of DNA application and a small number of dendritic cells present in the draining lymph nodes. Antigen expression persisted for up to 12 wk in keratinocytes, but dendritic cells did not express C5 beyond 2 wk after vaccination. Cross-priming of dendritic cells by C5 expressed in keratinocytes did not occur unless keratinocyte death was induced by irradiation in vitro. CD4 T cells were activated in the draining lymph nodes only and subsequently migrated to the spleen, where memory T cells persisted for longer than 40 wk despite the absence of a source of persistent antigen. While DNA vaccination resulted in transfection of a small proportion of dendritic cells only, it led to general activation of all dendritic cells, thus providing optimal conditions for effective T cell activation and maintenance of memory.


1989 ◽  
Vol 170 (4) ◽  
pp. 1285-1301 ◽  
Author(s):  
R Bujdoso ◽  
J Hopkins ◽  
B M Dutia ◽  
P Young ◽  
I McConnell

We have ablated peripheral lymph nodes in sheep and subsequently cannulated the pseudo-afferent lymphatic vessel that arises as a consequence of afferent lymphatic vessels reanastomosing with the former efferent duct. This technique allows the collection of lymph with a cellular composition that resembles true afferent fluid, and in particular, containing 1-10% dendritic cells. A 16-h collection of this lymph may contain between 10(6) and 10(7) dendritic cells. This dendritic cell population may be enriched to greater than 75% by a single-density gradient centrifugation step. We have generated a mAb that recognizes sheep CD1. This monoclonal not only reacts with afferent dendritic cells, but with dendritic cells in the skin and paracortical T cell areas of lymph nodes. The expression of CD1 suggests afferent dendritic cells are related to skin Langerhans' cells and other dendritic cells that act as accessory cells for T cell responses. Consistent with this is the high level of expression by dendritic cells of molecules involved in antigen recognition by T cells, including MHC class I and class II. Afferent dendritic cells express high levels of the cellular adhesion molecule LFA-3, and at the same time express a ligand for this molecule, namely CD2. The accessory functions of afferent dendritic cells resemble those displayed by mature Langerhans' cells and by lymph node interdigitating cells. These include clustering with resting T cells and stimulating their proliferation in a primary response to antigen. Afferent dendritic cells are capable of acquiring soluble protein antigen in vivo or in vitro and presenting the material directly to autologous T cells in an antigen-specific manner. We conclude that afferent dendritic cells represent a lymph-borne Langerhans' cell involved in antigen carriage to the lymph node.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1490
Author(s):  
Victoria Matyushenko ◽  
Irina Isakova-Sivak ◽  
Igor Kudryavtsev ◽  
Arina Goshina ◽  
Anna Chistyakova ◽  
...  

Background: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. Results: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA−CCR7− phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. Conclusion: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


Sign in / Sign up

Export Citation Format

Share Document