scholarly journals Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6

2017 ◽  
Vol 95 (5) ◽  
pp. 491-495 ◽  
Author(s):  
Naphak Modhiran ◽  
Daniel Watterson ◽  
Antje Blumenthal ◽  
Alan G Baxter ◽  
Paul R Young ◽  
...  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Muhammad Mikail Athif Zhafir Asyura ◽  
Ahmad Fauzi ◽  
Fakhru Adlan Ayub

Introduction: Dengue Virus (DENV) is the pathogen for human dengue fever and is responsible for 390 million infections per year. The viral genome produces about 10 viral protein products, one of them being NS1. The NS1 protein plays a key role in viral replication and stimulation of humoral immune cells, thus being the perfect candidate to create an effective antiviral drug or vaccine for dengue Methods: Dengue Virus (DENV) is the pathogen for human dengue fever and is responsible for 390 million infections per year. The viral genome produces about 10 viral protein products, one of them being NS1. The NS1 protein plays a key role in viral replication and stimulation of humoral immune cells, thus being the perfect candidate to create an effective antiviral drug or vaccine for dengue Conclusion: The review established promising results of using peptide-based intervention on NS1. Further in vivo and randomized controlled trials are advised to solidify the applicability and biosafety of the intervention    


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 726
Author(s):  
Nikole L. Warner ◽  
Kathryn M. Frietze

Dengue virus (DENV) is a major global health problem, with over half of the world’s population at risk of infection. Despite over 60 years of efforts, no licensed vaccine suitable for population-based immunization against DENV is available. Here, we describe efforts to engineer epitope-based vaccines against DENV non-structural protein 1 (NS1). NS1 is present in DENV-infected cells as well as secreted into the blood of infected individuals. NS1 causes disruption of endothelial cell barriers, resulting in plasma leakage and hemorrhage. Immunizing against NS1 could elicit antibodies that block NS1 function and also target NS1-infected cells for antibody-dependent cell cytotoxicity. We identified highly conserved regions of NS1 from all four DENV serotypes. We generated synthetic peptides to these regions and chemically conjugated them to bacteriophage Qβ virus-like particles (VLPs). Mice were immunized two times with the candidate vaccines and sera were tested for the presence of antibodies that bound to the cognate peptide, recombinant NS1 from all four DENV serotypes, and DENV-2-infected cells. We found that two of the candidate vaccines elicited antibodies that bound to recombinant NS1, and one candidate vaccine elicited antibodies that bound to DENV-infected cells. These results show that an epitope-specific vaccine against conserved regions of NS1 could be a promising approach for DENV vaccines or therapeutics to bind circulating NS1 protein.


Vaccine ◽  
2006 ◽  
Vol 24 (31-32) ◽  
pp. 5852-5861 ◽  
Author(s):  
Wen-Tssann Liu ◽  
Wei-Ting Lin ◽  
Chung-Chin Tsai ◽  
Chuan-Chang Chuang ◽  
Chin-Len Liao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6821
Author(s):  
Rasel Ahmed Khan ◽  
Rajib Hossain ◽  
Abolghasem Siyadatpanah ◽  
Khattab Al-Khafaji ◽  
Abul Bashar Ripon Khalipha ◽  
...  

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (−8.0 to −9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts −7.5, −6.3, −7.8, and −6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


2010 ◽  
Vol 150 (1-2) ◽  
pp. 49-55 ◽  
Author(s):  
Lan Jiang ◽  
Jun-Mei Zhou ◽  
Yue Yin ◽  
Dan-Yun Fang ◽  
Yun-Xia Tang ◽  
...  

2014 ◽  
Vol 29 (3) ◽  
pp. 162-169 ◽  
Author(s):  
Jingjing Fan ◽  
Yi Liu ◽  
Zhiming Yuan

2015 ◽  
Vol 220 ◽  
pp. 5-12 ◽  
Author(s):  
Advaita Ganguly ◽  
Ravindra B. Malabadi ◽  
Pravin K. Bhatnagar ◽  
Xinli Tang ◽  
Dipankar Das ◽  
...  

Author(s):  
Puneet Bhatt ◽  
Sasidharan Pillai Sabeena ◽  
Muralidhar Varma ◽  
Govindakarnavar Arunkumar

AbstractThe pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.


Virology ◽  
2008 ◽  
Vol 380 (2) ◽  
pp. 296-303 ◽  
Author(s):  
Jennifer L. Kyle ◽  
Scott J. Balsitis ◽  
Luhua Zhang ◽  
P. Robert Beatty ◽  
Eva Harris

Molecules ◽  
2017 ◽  
Vol 22 (4) ◽  
pp. 607 ◽  
Author(s):  
Martina Jones ◽  
Fiona Legge ◽  
Kebaneilwe Lebani ◽  
Stephen Mahler ◽  
Paul Young ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document