scholarly journals Bis-imidazolinylindoles are active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Mycobacterium tuberculosis

2012 ◽  
Vol 66 (1) ◽  
pp. 47-49 ◽  
Author(s):  
Rekha G Panchal ◽  
Douglas Lane ◽  
Helena I Boshoff ◽  
Michelle M Butler ◽  
Donald T Moir ◽  
...  
Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 427
Author(s):  
Martyna Kasela ◽  
Agnieszka Grzegorczyk ◽  
Bożena Nowakowicz-Dębek ◽  
Anna Malm

Nursing homes (NH) contribute to the regional spread of methicillin-resistant Staphylococcus aureus (MRSA). Moreover, residents are vulnerable to the colonization and subsequent infection of MRSA etiology. We aimed at investigating the molecular and phenotypic characteristics of 21 MRSA collected from the residents and personnel in an NH (Lublin, Poland) during 2018. All MRSA were screened for 20 genes encoding virulence determinants (sea-see, eta, etb, tst, lukS-F-PV, eno, cna, ebpS, fib, bbp, fnbA, fnbB, icaADBC) and for resistance to 18 antimicrobials. To establish the relatedness and clonal complexes of MRSA in NH we applied multiple-locus variable-number tandem-repeat fingerprinting (MLVF), pulse field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing. We identified four sequence types (ST) among two clonal complexes (CC): ST (CC22) known as EMRSA-15 as well as three novel STs—ST6295 (CC8), ST6293 (CC8) and ST6294. All tested MRSA were negative for sec, eta, etb, lukS-F-PV, bbp and ebpS genes. The most prevalent gene encoding toxin was sed (52.4%; n = 11/21), and adhesins were eno and fnbA (100%). Only 9.5% (n = 2/21) of MRSA were classified as multidrug-resistant. The emergence of novel MRSA with a unique virulence and the presence of epidemic clone EMRSA-15 creates challenges for controlling the spread of MRSA in NH.


2014 ◽  
Vol 33 (10) ◽  
pp. e252-e259 ◽  
Author(s):  
Cilmara P. Garcia ◽  
Juliana F. Rosa ◽  
Maria A. Cursino ◽  
Renata D. Lobo ◽  
Carla H. Mollaco ◽  
...  

2021 ◽  
Vol 52 (6) ◽  
pp. 1356-1364
Author(s):  
A. M. Abd Zaid ◽  
N. J. Kandala

The study was aimed to evaluate the prevalence of MRSA in some Iraqi hospitals and determine the most powerful methods for identification of MRSA, in order to achieve the, 278 samples were collected from different hospitals in Iraq in various intervals, 204 out of 287 were identified as Staphylococcus aureus by conventional cultural methods and microscopic characteristics and 177 isolates are identified as MRSA by using HiCrome MeReSa Agar Base medium, but 154 of 177 (87%) isolates are methicillin resistance in sensitivity test. MRSA isolates were highly resistant to β-lactam antibiotics and considered multidrug resistant (MDR) in percent of (94.9%). Touchdown PCR used to identify the isolates, 97.05% were identified as Staphylococcus aureus, while 80.88%  as MRSA.                  


2015 ◽  
Vol 26 (3) ◽  
pp. 233-243
Author(s):  
Kristine Anne Scordo

Methicillin-resistant Staphylococcus aureus (MRSA) continues to cause significant morbidity and mortality. Despite advances in medical care, the prevalence of both community-acquired and hospital-acquired MRSA has progressively increased. Community-acquired MRSA typically occurs in patients without recent illness or hospitalization, presents as acute skin and soft tissue infections, and is usually not multidrug resistant. Hospital-acquired MRSA, however, presents in patients recently hospitalized or treated in long-term care settings and in those who have had medical procedures and is usually associated with multidrug-resistant strains. Both types of infections, if not properly treated, have the potential to become invasive. This article discusses current intravenous antibiotics that are available for the empiric treatment of MRSA infections along with a newer phenomenon known as the “seesaw effect.”


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shumyila Nasir ◽  
Muhammad Sufyan Vohra ◽  
Danish Gul ◽  
Umm E Swaiba ◽  
Maira Aleem ◽  
...  

The emergence of multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), the chief etiological agent for a range of refractory infections, has rendered all β-lactams ineffective against it. The treatment process is further complicated with the development of resistance to glycopeptides, primary antibiotics for treatment of MRSA. Antibiotic combination therapy with existing antimicrobial agents may provide an immediate treatment option. Minimum inhibitory concentrations (MICs) of 18 different commercially available antibiotics were determined along with their 90 possible pairwise combinations and 64 triple combinations to filter out 5 best combinations. Time-Kill kinetics of these combinations were then analyzed to find collateral bactericidal combinations which were then tested on other randomly selected MRSA isolates. Among the top 5 combinations including levofloxacin-ceftazidime; amoxicillin/clavulanic acid-tobramycin; amoxicillin/clavulanic acid-cephradine; amoxicillin/clavulanic acid-ofloxacin; and piperacillin/tazobactam-tobramycin, three combinations were found to be collaterally effective. Levofloxacin-ceftazidime acted synergistically in 80% of the tested clinical MRSA isolates. First-line β-lactams of lower generations can be used effectively against MRSA infection when used in combination. Antibiotics other than glycopeptides may still work in combination.


Sign in / Sign up

Export Citation Format

Share Document