scholarly journals Delayed Neuronal Recovery and Neuronal Death in Rat Hippocampus following Severe Cerebral Ischemia: Possible Relationship to Abnormalities in Neuronal Processes

1984 ◽  
Vol 4 (2) ◽  
pp. 194-205 ◽  
Author(s):  
C. K. Petito ◽  
W. A. Pulsinelli

Mechanisms involved in the postischemic delay in neuronal recovery or death in rat hippocampus were evaluated by light and electron microscopy at 3, 15, 30, and 120 min and 24, 36, 48, and 72 h following severe cerebral ischemia that was produced by permanent occlusion of the vertebral arteries and 30-min occlusion of the common carotid arteries. During the early postischemic period, neurons in the Ca1 and Ca3 regions both showed transient mitochondrial swelling followed by the disaggregation of polyribosomes, decrease in rough endoplasmic reticulum (RER), loss of Golgi apparatus (GA) cisterns, and decrease in GA vesicles. Recovery of these organelles in Ca3 neurons was first noted between 24 and 36 h and was accompanied by a marked proliferation of smooth endoplasmic reticulum (SER). Many Ca1 neurons initially recovered between 24 and 36 h, but subsequent cell death at 48–72 h was often preceded by peripheral chromatolysis, constriction and shrinkage of the proximal dendrites, and cytoplasmic dilatation that was continuous with focal expansion of RER cisterns. Because SER accumulates in resistant Ca3 neurons and proximal neuronal processes are damaged in vulnerable Ca1 neurons, we hypothesize that delayed cell recovery or death in vulnerable and resistant postischemic hippocampal neurons is related to abnormalities in neuronal processes.

1972 ◽  
Vol 20 (12) ◽  
pp. 1006-1023 ◽  
Author(s):  
ALEX B. NOVIKOFF ◽  
PHYLLIS M. NOVIKOFF ◽  
CLEVELAND DAVIS ◽  
NELSON QUINTANA

A modification of the Novikoff-Goldfischer alkaline 3,3'-diaminobenzidine medium for visualizing peroxisomes is described. It makes possible light microscopic as well as electron microscopic studies of a recently described class of peroxisomes, the microperoxisomes. Potassium cyanide (5 x 10–3 M) is included in the medium to inhibit mitochondrial staining, the pH is 9.7 and there is a high concentration of H2O2 (0.05%). Two cell types have been chosen to illustrate the advantages of the new procedure for demonstrating the microperoxisomes: the absorptive cells in the human jejunum and the distal tubule cells in the guinea pig kidney. Suggestive relations of microperoxisomes and lipid are described in the human jejunum. The microperoxisomes are strategically located between smooth endoplasmic reticulum that radiates toward the organelles and contains lipid droplets and "central domains" of highly specialized endoplasmic reticulum which do not show the lipid droplets. The microperoxisomes are also present at the periphery of large lipid-like drops. In the guinea pig kidney tubule there is a striking difference between the thick limb of Henle and distal tubule. The distal tubule has a population of cells with large numbers of microperoxisomes readily visible by light microscopy; these cells are not present in the thick limb of Henle. Other differences between the two are also described.


2020 ◽  
Author(s):  
Elena Vicario-Orri ◽  
Kensaku Kasuga ◽  
Sheue-Houy Tyan ◽  
Karen Chiang ◽  
Silvia Viana da Silva ◽  
...  

ABSTRACTThe patterns of Aβ-induced synaptic injury were examined after targeting of the amyloid precursor protein (APP) preferentially to either CA1 or CA3 neurons using Cre-lox technology combined with tetracycline-regulated expression. Both CA1- and CA3-APP-expressing transgenic mouse lines exhibited reduction in long-term potentiation (LTP) only when APP was expressed in neurons presynaptic to the recording site, whereas LTP remained comparable to wild-type mice when APP was expressed in postsynaptic neurons. As quantified by both light and electron microscopy, this orientation-specific impairment in synaptic plasticity was mirrored by synaptic loss in regions receiving axonal inputs from neurons expressing APP. Furthermore, A(plaque deposition also occurred only in the postsynaptic axonal fields of APP-expressing neurons. These deficits were reversed not only with doxycycline to inhibit APP expression but also with γ-secretase and Fyn kinase inhibitors, supporting the interpretation that the observed synaptic injury was mediated by Aβ. Taken together, these results demonstrate that APP/Aβ-induced synaptic toxicity is preferentially initiated by signaling of presynaptically expressed APP to the postsynaptic compartment.


1979 ◽  
Vol 91 (1) ◽  
pp. 134-149 ◽  
Author(s):  
Peter M. Robinson ◽  
Elisabeth J. Rowe ◽  
E. Marelyn Wintour

ABSTRACT The cortex of sheep foetal adrenal glands from 25 days gestation until newborn (term equals 147 ± 3 days) were examined by light and electron microscopy. Three stages of development are of particular importance in relating structure to function: 1) from 35 to 60 days, 2) from 60 to 120 days and 3) from 120 days to term. Between 35 and 60 days one cortical cell type predominated. It contained mitochondria with lamellar and vesicular cristae, scattered long strands of granular endoplasmic reticulum and only small amounts of smooth endoplasmic reticulum. After about 60 days two zones were apparent in the cortex and chromaffin cells became concentrated in the medulla. After 80 days the outer zone contained cells which resembled mature zona glomerulosa cells and the cells in the inner zone remained like those seen between 35 and 60 days, except they contained even less smooth endoplasmic reticulum. However, after about 90 days a small number of deep inner zone cells contained mitochondria with vesicular cristae which thus resemble mitochondria in the mature zona fasciculata. From about 120 days there was an increase in the number of cells in the inner zone that contained mitochondria with vesicular cristae. These cells also contained substantial quantities of smooth endoplasmic reticulum. At term most inner zone cells have this mature appearance. Thus there is no "foetal cortex" in the sheep analogous to that found in human adrenal development, i. e. there is no prominent zone of cells containing large amounts of smooth endoplasmic reticulum which is present throughout most of the foetal period of development, and which regresses at birth. The structure of the cells present between 35 and 60 days was unexpected because it has been shown previously that sheep foetal adrenals of this age are capable of producing relatively large quantities of steroid hormones. However, the appearance of cells resembling mature zona glomerulosa cells at about 80 days correlates with the previously demonstrated ability of sheep adrenal glands of this age to produce relatively large quantities of aldosterone. The rapid development of numbers of mature cells in the last 3 weeks of gestation correlates with the previously described ability of near term sheep foetal adrenals to produce very large quantities of steroid hormones.


2021 ◽  
Author(s):  
Etay Aloni ◽  
Serphima Verbitzky ◽  
Lilia kushnireva ◽  
Eduard Korkotian ◽  
Menahem Segal

Abstract Synaptopodin (SP) is localized within the spine apparatus, an enigmatic structure located in the neck of spines of central excitatory neurons. It serves as a link between the spine head, where the synapse is located, and the endoplasmic reticulum (ER) in the parent dendrite (Vlachos et al. 2009, Korkotian and Segal, 2011, Zhang et al. 2013). SP is also located in the axon initial segment, in association with the cisternal organelle, another structure related to endoplasmic reticulum. Extensive research using SP knockout (SPKO) mice suggests that SP has a pivotal role in structural and functional plasticity (Deller et al. 2003, Deller et al. 2007). Consequently, SPKO mice were shown to be deficient in cognitive functions, and in ability to undergo long term potentiation of reactivity to afferent stimulation (Deller et al. 2003). In contrast, neurons of SPKO mice appear to be more excitable than their wild type (wt) counterparts(Bas Orth et al, 2007). To address this discrepancy, we have now recorded activity of CA1 neurons in the mouse hippocampus slice, with both extracellular and patch recording methods. Electrophysiologically, SPKO cells in CA1 region of the dorsal hippocampus were more excitable than wt ones. In addition, exposure of mice to a complex environment caused a higher proportion of arc-expressing cells in SPKO than in wt mice hippocampus. These experiments indicate that higher excitability and higher expression of arc staining may reflect SP deficiency in the hippocampus of adult SPKO mice.


1988 ◽  
Vol 36 (10) ◽  
pp. 1263-1273 ◽  
Author(s):  
J Paiement ◽  
F W Kan ◽  
J Lanoix ◽  
M Blain

Fragments of rough and smooth endoplasmic reticulum purified from rat liver were injected into Xenopus oocyte cytoplasm. Light and electron microscopy, cytochemistry, immunocytochemistry, and enzyme assay were employed to determine the fate of heterologous membranes in the host cytoplasm. The in vivo-incubated microsomes disappeared in a time-dependent manner. Within 3 hr, rough microsomes were replaced by flattened ER cisternae and smooth microsomes were replaced by a network of anastomosing tubules. Polyclonal antibodies against rat liver microsomes and protein A-gold complexes were applied to glycol methacrylate sections of microinjected oocytes. Specific labeling was observed over discrete rough and smooth ER cisternae 3 hr after microinjection. Endogenous ER was not labeled by this technique, and label was not observed when sections were treated with pre-immune antibodies. Diaminobenzidene cytochemistry of microinjected rat lacrimal gland microsomes revealed enzyme activity in heterologous microsomes after 3 hr of in vivo incubation. Control injected microsomes (inactivated by heat denaturation) became associated with autophagic vacuoles, coincident with changes in lysosomal activity. Freshly isolated un-denatured microsomes did not provoke changes in lysosomal activity, and glucose-6-phosphatase activity associated with microinjected membranes could be detected 21 hr after in vivo incubation. Since rat liver microsomes reconstitute after in vivo incubation into cytoplasmic structures resembling those from which they were derived, we conclude that the microinjected membrane fragments act as templates for their own three-dimensional organization.


1992 ◽  
Vol 70 (S1) ◽  
pp. S206-S218 ◽  
Author(s):  
A. H. Cornell-Bell ◽  
P. G. Thomas ◽  
J. M. Caffrey

Neurons and glia exhibit complex homeostatic interactions via shared extracellular space which can involve metabolites, inorganic ions, and neurotransmitters. Focal application of glutamate to both human and rat central nervous system astrocytes in primary culture produced a rapid, transient increase in both cytoplasmic and nuclear Ca2+. These Ca2+ waves can propagate at up to 15–20 μm/s for long distances (millimetres) through the astrocyte syncitium. Oscillatory Ca2+ signals were frequently observed under control conditions and were enhanced by glutamate application. These Ca2+ signals were paralleled by rapid extensions of filopodia from the astrocyte cell margin and apical surface near the point of glutamate application. Focal application of glutamate to rat hippocampal neurons also elicited rapid, transient increases in intracellular Ca2+. Levels of Ca2+ signals were consistently two- to three-fold greater in pyramidal neurons cultured from CA1 than in those from CA3. Filopodial extension was extensive in CA1 neurons, but rare in CA3 neurons, and in either case observable only during the first few days of primary culture. Diversity of glial and neuronal responses to binding the glutamate receptors may reflect their roles in homeostatic interactions.Key words: glutamate, astrocytes, hippocampal neurons, Ca2+ signals, filopodia.


1980 ◽  
Vol 85 (2) ◽  
pp. 473-480 ◽  
Author(s):  
C Lin ◽  
J Dedman ◽  
A Means

Calmodulin, a multifunctional Ca(++)-binding protein, is present in all eucaryotic cells. We have investigated the distribution of this protein in the rat cerebellum by immunoelectron microscopy using a Fab-peroxidase conjugate technique. In Purkinje and granular cell bodies, calmodulin reaction product was found localized both on free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No calmoduline was observed in the cisternae of RER or the Golgi apparactus. Calmodulin did not appear to be concentrated in the soluble fraction of the cell under the conditions used. Rather, peroxidase reaction product could be seen associated with membranes of the Golgi apparatus the smooth endoplasmic reticulum (SER), and the plasma membrane of both cell bodies and neuronal processes. In the neuronal dendrites, calmodulin appeared to be concentrated on membranes of the SER, small vesicles, and mitochondria. Also, granular calmodulin was observed in the amorphous material. In the synaptic junction, a large amount of calmodulin was seen attached to the inner surface of the postsynaptic membrane, whereas very little was observed in the presynaptic membrane or vesicles. These observations suggest that calmodulin is synthesized on ribosomes and discharged into the cytosol, and that it then becomes associated with a variety of intracellular membranes. Calmodulin also seems to be transported via neuronal processes to the postsynaptic membrane. Calmodulin localization at the postsynaptic membrane suggests that this protein may mediate calcium effects at the synaptic junction and, thus, may play a role in the regulation of neurotransmission.


1997 ◽  
Vol 78 (5) ◽  
pp. 2649-2654 ◽  
Author(s):  
Michael Madeja ◽  
Ulrich Muβhoff ◽  
Norbert Binding ◽  
Ute Witting ◽  
Erwin-Josef Speckmann

Madeja, Michael, Ulrich Muβhoff, Norbert Binding, Ute Witting, and Erwin-Josef Speckmann. Effects of Pb2+ on delayed-rectifier potassium channels in acutely isolated hippocampal neurons. J. Neurophysiol. 78: 2649–2654, 1997. The effects of Pb2+ on delayed-rectifier potassium currents were studied in acutely isolated hippocampal neurons (CA1 neurons, CA3 neurons, granule cells) from the guinea pig using the patch-clamp technique in the whole cell configuration. Pb2+ in micromolar concentrations decreased the potassium currents in a voltage-dependent manner, which appeared as a shift of the current-voltage relation to positive potentials. The effect was reversible after washing. The concentration-responsiveness measured in CA1 neurons revealed an IC50 value of 30 μmol/l at a potential of −30 mV. The half-maximal shift of the current-voltage relation was reached at 33 μmol/l and the maximal obtainable shift was 13.4 mV. For the different types of hippocampal neurons, the shift of the current-voltage relation was distinct and was 7.9 mV in CA1 neurons, 13.7 mV in CA3 neurons, and 14.2 mV in granule cells with 50 μmol/l Pb2+. The effects described here of Pb2+ on the potassium currents in hippocampal neurons and the differences between the types of hippocampal neurons correspond with the known properties and distributions of cloned potassium channels found in the hippocampus. As a whole, our results demonstrate that Pb2+ in micromolar concentration is a voltage-dependent, reversible blocker of delayed-rectifier potassium currents of hippocampal neurons. This effect has to be taken into consideration as a possible contributing mechanism for the neurological symptoms of enhanced brain activity seen during Pb2+ intoxication.


2017 ◽  
Vol 13 (4) ◽  
pp. 379-390 ◽  
Author(s):  
Gina Hadley ◽  
Ain A Neuhaus ◽  
Yvonne Couch ◽  
Daniel J Beard ◽  
Bryan A Adriaanse ◽  
...  

Background Cornu ammonis 3 (CA3) hippocampal neurons are resistant to global ischemia, whereas cornu ammonis (CA1) 1 neurons are vulnerable. Hamartin expression in CA3 neurons mediates this endogenous resistance via productive autophagy. Neurons lacking hamartin demonstrate exacerbated endoplasmic reticulum stress and increased cell death. We investigated endoplasmic reticulum stress responses in CA1 and CA3 regions following global cerebral ischemia, and whether pharmacological modulation of endoplasmic reticulum stress or autophagy altered neuronal viability . Methods In vivo: male Wistar rats underwent sham or 10 min of transient global cerebral ischemia. CA1 and CA3 areas were microdissected and endoplasmic reticulum stress protein expression quantified at 3 h and 12 h of reperfusion. In vitro: primary neuronal cultures (E18 Wistar rat embryos) were exposed to 2 h of oxygen and glucose deprivation or normoxia in the presence of an endoplasmic reticulum stress inducer (thapsigargin or tunicamycin), an endoplasmic reticulum stress inhibitor (salubrinal or 4-phenylbutyric acid), an autophagy inducer ([4′-(N-diethylamino) butyl]-2-chlorophenoxazine (10-NCP)) or autophagy inhibitor (3-methyladenine). Results In vivo, decreased endoplasmic reticulum stress protein expression (phospho-eIF2α and ATF4) was observed at 3 h of reperfusion in CA3 neurons following ischemia, and increased in CA1 neurons at 12 h of reperfusion. In vitro, endoplasmic reticulum stress inducers and high doses of the endoplasmic reticulum stress inhibitors also increased cell death. Both induction and inhibition of autophagy also increased cell death. Conclusion Endoplasmic reticulum stress is associated with neuronal cell death following ischemia. Neither reduction of endoplasmic reticulum stress nor induction of autophagy demonstrated neuroprotection in vitro, highlighting their complex role in neuronal biology following ischemia.


Sign in / Sign up

Export Citation Format

Share Document