scholarly journals The Characterization of Varicella Zoster Virus–Specific T Cells in Skin and Blood during Aging

2015 ◽  
Vol 135 (7) ◽  
pp. 1752-1762 ◽  
Author(s):  
Milica Vukmanovic-Stejic ◽  
Daisy Sandhu ◽  
Judith A. Seidel ◽  
Neil Patel ◽  
Toni O. Sobande ◽  
...  
2003 ◽  
Vol 77 (2) ◽  
pp. 1268-1280 ◽  
Author(s):  
Jeremy O. Jones ◽  
Ann M. Arvin

ABSTRACT During primary infection, varicella-zoster virus (VZV) is spread via lymphocytes to skin, where it induces a rash and establishes latency in sensory ganglia. A live, attenuated varicella vaccine (vOka) was generated by using the VZV Oka strain (pOka), but the molecular basis for vOka attenuation remains unknown. Little is known concerning the effects of wild-type or attenuated VZV on cellular gene regulation in the host cells that are critical for pathogenesis. In this study, transcriptional profiles of primary human T cells and fibroblasts infected with VZV in cell culture were determined by using 40,000-spot human cDNA microarrays. Cellular gene transcription in human skin xenografts in SCID mice that were infected with VZV in vivo was also evaluated. The profiles of cellular gene transcripts that were induced or inhibited in infected human foreskin fibroblasts (HFFs), T cells, and skin in response to pOka and vOka infection were similar. However, significant alterations in cellular gene regulation were observed among the three differentiated human cell types that were examined, suggesting specific differences in the biological consequences of VZV infection related to the target cell. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time reverse transcription-PCR analysis of VZV-infected cells. Interestingly, the transcription of caspase 8 was found to be decreased in infected T cells but not in HFFs or skin, which may signify a tissue-specific antiapoptosis mechanism. The use of microarrays to demonstrate differences in effects on host cell genes in primary, biologically relevant cell types provides background information for experiments to link these various response phenotypes with mechanisms of VZV pathogenesis that are important for the natural course of human infection.


2006 ◽  
Vol 80 (19) ◽  
pp. 9772-9778 ◽  
Author(s):  
Louise Jones ◽  
Antony P. Black ◽  
Gathsaurie N. Malavige ◽  
Graham S. Ogg

ABSTRACT Open reading frame 4 (ORF4) of varicella-zoster virus (VZV) encodes an immediate-early protein that is believed to be important for viral infectivity and establishing latency. Evidence suggests that VZV-specific T cells are crucial in the control of viral replication, but there are no data addressing the existence of potential ORF4 protein-specific CD4+ T cells. We tested the hypothesis that VZV ORF4 protein-specific CD4+ T cells could be identified and characterized within the peripheral blood of healthy immune donors following primary infection. Gamma interferon (IFN-γ) immunosorbent assays were used to screen peripheral blood mononuclear cells obtained from healthy seropositive donors for responses to overlapping ORF4 peptides, viral lysate, and live vaccine. High frequencies of ORF4 protein-specific T cells were detected ex vivo in individuals up to 52 years after primary infection. Several immunogenic regions of the ORF4 protein were identified, including a commonly recognized epitope which was restricted through HLA-DRB1*07. Total ORF4 protein-specific responses comprised 19.7% and 20.7% of the total lysate and vaccine responses, respectively, and were dominated by CD4+ T cells. Indeed, CD4+ T cells were found to dominate the overall virus-specific IFN-γ cellular immune response both ex vivo and after expansion in vitro. In summary, we have identified an ORF4 protein as a novel target antigen for persistent VZV-specific CD4+ T cells, with implications for disease pathogenesis and future vaccine development.


2003 ◽  
Vol 77 (20) ◽  
pp. 11180-11185 ◽  
Author(s):  
Hitoshi Sato ◽  
Lesley Pesnicak ◽  
Jeffrey I. Cohen

ABSTRACT Varicella-zoster virus (VZV) results in a lifelong latent infection in human sensory and cranial nerve ganglia after primary infection. VZV open reading frame 47 (ORF47) and ORF66 encode protein kinases that phosphorylate several viral proteins, including VZV glycoprotein gE and ORF32, ORF62, and ORF63 proteins. Here we show that the ORF47 protein kinase also phosphorylates gI. While ORF47 is essential for virus replication in human T cells and skin, we found the gene to be dispensable for establishment of latent infection in dorsal root ganglia of rodents. ORF66 protein is expressed during latency. Rodents infected with VZV unable to express ORF66 developed latent infection at a rate similar to that for the parental virus. ORF63 transcripts, a hallmark of VZV latency, were also detected in similar numbers of animals infected with the ORF47 and ORF66 mutants and with the parental virus. VZV mutants unable to express four of the six genes that do not have herpes simplex virus (HSV) homologs (ORFs 1, 13, 32, 57) were also unimpaired for establishment of latency. While a truncated HSV VP16 mutant was previously reported to be unable to establish latency in a mouse model, we found that VZV with a deletion of ORF10, the homolog of HSV VP16, was dispensable for establishment of latency. Thus, seven genes, including one expressed during latency, are dispensable for establishing latent VZV infection.


2008 ◽  
Vol 83 (4) ◽  
pp. 2020-2024 ◽  
Author(s):  
Yasushi Akahori ◽  
Kazuhiro Suzuki ◽  
Tohru Daikoku ◽  
Masae Iwai ◽  
Yoshihiro Yoshida ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein H (gH) is the major neutralization target of VZV, and its neutralizing epitope is conformational. Ten neutralizing human monoclonal antibodies to gH were used to map the epitopes by immunohistochemical analysis and were categorized into seven epitope groups. The combinational neutralization efficacy of two epitope groups was not synergistic. Each epitope was partially or completely resistant to concanavalin A blocking of the glycomoiety of gH, and their antibodies inhibited the cell-to-cell spread of infection. The neutralization epitope comprised at least seven independent protein portions of gH that served as the target to inhibit cell-to-cell spread.


1982 ◽  
Vol 73 (1) ◽  
pp. 383-386 ◽  
Author(s):  
Karen K. Biron ◽  
James A. Fyfe ◽  
Jean E. Noblin ◽  
Gertrude B. Elion

2011 ◽  
Vol 8 (1) ◽  
pp. 547 ◽  
Author(s):  
Jong Kim ◽  
Gyoo Jung ◽  
Yu Kim ◽  
Ga Ji ◽  
Hyung Kim ◽  
...  

2004 ◽  
Vol 200 (7) ◽  
pp. 917-925 ◽  
Author(s):  
Chia-Chi Ku ◽  
Leigh Zerboni ◽  
Hideki Ito ◽  
Brad S. Graham ◽  
Mark Wallace ◽  
...  

Primary infection with varicella-zoster virus (VZV) causes the characteristic syndrome of varicella, or chickenpox. Experiments in severe combined immunodeficiency mice with human skin grafts (SCIDhu mice) indicate that VZV infection of T cells can mediate transfer of infectious virus to skin. VZV-infected T cells reached epithelial sites of replication within 24 h after entering the circulation. Memory CD4+ T cells were the predominant population recovered from skin in SCIDhu mice given uninfected or infected mononuclear cells, suggesting that immune surveillance by memory T cells may facilitate VZV transfer. The increased susceptibility of memory T cells to VZV infection may further enhance their role in VZV pathogenesis. During VZV skin infection, viral gene products down-regulated interferon-α to permit focal replication, whereas adjacent epidermal cells mounted a potent interferon-α response against cell–cell spread. Interleukin-1α, although activated in VZV-infected cells, did not trigger expression of endothelial adhesion molecules, thereby avoiding early recruitment of inflammatory cells. The prolonged varicella incubation period appears to represent the time required for VZV to overcome antiviral responses of epidermal cells and generate vesicles at the skin surface. Modulation of VZV replication by cutaneous innate immunity may avoid an incapacitating infection of the host that would limit opportunities for VZV transmission.


Sign in / Sign up

Export Citation Format

Share Document