Smart site choice makes green energy a healthy deal

Nature ◽  
2013 ◽  
Keyword(s):  
IEE Review ◽  
1990 ◽  
Vol 36 (1) ◽  
pp. 27
Author(s):  
David Lidgate
Keyword(s):  

Informatica ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 187-210
Author(s):  
Alba Amato ◽  
Marco Scialdone ◽  
Salvatore Venticinque

Author(s):  
Seyed Ehsan Hosseini

Renewable and sustainable energy has an evolving story as the ongoing trade war in the word is influencing crude oil prices. Moreover, the global warming is an inevitable consequence of the worldwide increasing rate of fossil fuel utilization which has persuaded the governments to invest on the clean and sustainable energy resources. In recent years, the cost of green energy has tumbled, making the price of renewables competitive to the fossil fuels. Although, the hydrogen fuel is still extremely expensive compared to the crude oil price, investigations about clean hydrogen fuel production and utilization has been developed significantly which demonstrate the importance of the hydrogen fuel in the future. This article aims to scrutinize the importance of green hydrogen fuel production from solar/wind energy.


2020 ◽  
Vol 13 ◽  
Author(s):  
Inbasekaran S. ◽  
G. Thiyagarajan ◽  
Ramesh C. Panda ◽  
S. Sankar

Background:: Chrome shavings, a bioactive material, are generated from tannery as waste material. These chrome shaving can be used for the preparation of many value-added products. Objective:: One such attempt is made to use these chrome shaving wastes as a composite bio-battery to produce DC voltage, an alternate green energy source and cleaner technology. Methods:: Chrome shavings are hydrolyzed to make collagen paste and mixed with the ferrous nanoparticles of Moringa oleifera leaves and Carbon nanoparticles of Onion peels to form electrolyte paste as base. Then, the electrolyte base was added to the aluminum paste and conducting gel, and mixed well to form composite material for bio-battery. Results:: The composite material of bio-battery has been characterized using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). Series and parallel circuit testing were done using Copper and Zinc electrodes or Carbon and Zinc electrodes as the battery terminals in the electrolyte paste. The surface area of these electrodes needs standardization from bench to pilot scale. The power generated, for an AA battery size, using a single bio-battery cell has produced a DC voltage of 1.5 V; current of 900 mA. Circuit testing on 1 ml of 80 well-cells connected in series has produced DC output of 18 V and 1100 mA whereas 48 V and 1500 mA were obtained from a series-parallel connection. Conclusion:: The glass transition temperature (Tg) of electrolyte of the bio-battery at 53°C indicates that, at this temperature, all the substances present in the bio-battery are well spread and contributing consistently to the electrolyte activity where Fe-C-Nano-Particles were able to form strong chemical bonds on the flanking hydroxyl group sites of the Collagen leading to reduced mobility of polymers and increase Tg. The results instigate promising trends for commercial exploitation of this composite for bio-battery production.


Author(s):  
Joanna Gomula

In 2016, panel and Appellate Body reports were adopted in seven disputes. The majority of the disputes concerned general obligations under two basic WTO agreements: the General Agreement on Tariffs and Trade of 1994 (GATT 1994) and the General Agreement on Trade in Services (GATS). Therefore, the 2016 reports provide valuable analytical resources on basic GATT and GATS concepts, and the respective general exceptions clauses. The other disputes concerned anti-dumping and countervailing duty measures. Two disputes involving Latin American states related to measures imposed in order to combat money laundering and tax evasion, and raised the question of whether GATT tariff obligations apply to “illicit trade”. Two other disputes related to the use of green energy, including the promotion of solar cells and modules, and anti-dumping duties on imports of biodiesel.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2499
Author(s):  
Krzysztof Jastrzębski ◽  
Piotr Kula

The energetic and climate crises should pose a challenge for scientists in finding solutions in the field of renewable, green energy sources. Throughout more than two decades, the search for new opportunities in the energy industry made it possible to observe the potential use of hydrogen as an energy source. One of the greatest challenges faced by scientists for the sake of its use as an energy source is designing safe, usable, reliable, and effective forms of hydrogen storage. Moreover, the manner in which hydrogen is to be stored is closely dependent on the potential use of this source of green energy. In stationary use, the aim is to achieve high volumetric density of the container. However, from the point of view of mobile applications, an extremely important aspect is the storage of hydrogen, using lightweight tanks of relatively high density. That is why, a focus of scientists has been put on the use of carbon-based materials and graphene as a perspective solution in the field of H2 storage. This review focuses on the comparison of different methods for hydrogen storage, mainly based on the carbon-based materials and focuses on efficiently using graphene and its different forms to serve a purpose in the future H2-based economy.


Sign in / Sign up

Export Citation Format

Share Document