Protein kinase activity of phosphoinositide 3-kinase regulates β-adrenergic receptor endocytosis

2005 ◽  
Vol 7 (8) ◽  
pp. 785-796 ◽  
Author(s):  
Sathyamangla V. Naga Prasad ◽  
Arundathi Jayatilleke ◽  
Aasakiran Madamanchi ◽  
Howard A. Rockman
PLoS Biology ◽  
2013 ◽  
Vol 11 (3) ◽  
pp. e1001515 ◽  
Author(s):  
Daniel Thomas ◽  
Jason A. Powell ◽  
Benjamin D. Green ◽  
Emma F. Barry ◽  
Yuefang Ma ◽  
...  

2004 ◽  
Vol 32 (2) ◽  
pp. 330-331 ◽  
Author(s):  
L.C. Foukas ◽  
P.R. Shepherd

Class I phosphoinositide 3-kinases were originally characterized as lipid kinases, although more than 10 years ago they were also found to phosphorylate protein serine residues. However, while there is a vast amount of data on the function of this lipid kinase activity, relatively little is known about the function of the protein kinase activity. We discuss the evidence that suggests that the protein kinase activity of phosphoinositide 3-kinases mediates important signalling functions in cells.


2009 ◽  
Vol 419 (3) ◽  
pp. 603-610 ◽  
Author(s):  
Katja Lehmann ◽  
Jörg P. Müller ◽  
Bernhard Schlott ◽  
Philipp Skroblin ◽  
Dagmar Barz ◽  
...  

Neutrophils release reactive oxygen species (ROS) as part of the innate inflammatory immune response. Phosphoinositide 3-kinase γ (PI3Kγ), which is induced by the bacterial peptide N-formylmethionyl-leucyl-phenylalanine (fMLP), has been identified as an essential intracellular mediator of ROS production. However, the complex signalling reactions that link PI3Kγ with ROS synthesis by NADPH oxidase have not yet been described in detail. We found that activation of neutrophils by fMLP triggers the association of PI3Kγ with protein kinase Cα (PKCα). Specific inhibition of PI3Kγ suppresses fMLP-mediated activation of PKCα activity and ROS production, suggesting that the protein kinase activity of PI3Kγ is involved. Our data suggest that the direct interaction of PI3Kγ with PKCα forms a discrete regulatory module of fMLP-dependent ROS production in neutrophils.


1996 ◽  
Vol 315 (3) ◽  
pp. 709-713 ◽  
Author(s):  
Stephen R. JAMES ◽  
C. Peter DOWNES ◽  
Roy GIGG ◽  
Simon J. A. GROVE ◽  
Andrew B. HOLMES ◽  
...  

Recent evidence has suggested that activation of phosphoinositide 3-kinase (PI 3-kinase) is required for the activation of Akt-1 by growth factors and insulin. Here we demonstrate by two independent methods that Akt-1 from L6 myotubes binds to PtdIns(3,4,5)P3, PtdIns(3,4)P2 and PtdIns(4,5)P2 when presented against a background of phosphatidylserine (PtdSer) or a 1:1 mixture of PtdSer and phosphatidylcholine (PtdCho). No binding was observed with the lipids PtdIns(3,5)P2, PtdIns4P and PtdIns3P or background lipids. Activated, hyperphosphorylated forms of Akt-1 from insulin-stimulated L6 myotubes bound to PtdIns(3,4,5)P3 in a similar manner as inactive Akt-1. Quantitative analysis using surface plasmon resonance showed that the equilibrium association constant for the binding of Akt-1 to PtdIns(3,4,5)P3 was submicromolar and that PtdIns(3,4)P2 and PtdIns(4,5)P2 bound to Akt-1 with 3- and 6-fold lower affinities respectively. Interaction of Akt-1 with PtdIns(3,4,5)P3 did not activate the protein kinase activity, either before or after incubation with MgATP. A model is presented in which PtdIns(3,4,5)P3 may prime Akt-1 for activation by another protein kinase, perhaps by recruiting it to the plasma membrane.


1976 ◽  
Vol 35 (03) ◽  
pp. 635-642 ◽  
Author(s):  
M Steiner

SummaryThe effect of thrombin on the phosphorylating activity of platelet membranes was compared to that of trypsin. Preincubation of non-32P phosphorylated platelet membranes with or without either of these two enzymes resulted in a considerable loss of membrane protein kinase activity which was most severe when trypsin was used. Protein kinase activity and endogenous protein acceptors decreased in parallel. 32P-phosphorylated membranes showed a slow but progressive loss of label which was accelerated by trypsin. Thrombin under these conditions prevented the loss of 32P-phosphate. These results are interpreted to indicate a thrombin-induced destruction of a phosphoprotein phosphatase. The protein kinase activity of phosphorylated platelet membranes using endogenous or exogenous protein substrates showed a significant reduction compared to non-phosphorylated membranes suggesting a deactivation of protein kinase by phosphorylation of platelet membranes. Neither thrombin nor trypsin caused a qualitative change in the membrane polypeptides accepting 32P-phosphate but resulted in quantitative alterations of their ability to become phosphorylated.


Sign in / Sign up

Export Citation Format

Share Document