scholarly journals Diverse human extracellular RNAs are widely detected in human plasma

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Jane E. Freedman ◽  
Mark Gerstein ◽  
Eric Mick ◽  
Joel Rozowsky ◽  
Daniel Levy ◽  
...  

Abstract There is growing appreciation for the importance of non-protein-coding genes in development and disease. Although much is known about microRNAs, limitations in bioinformatic analyses of RNA sequencing have precluded broad assessment of other forms of small-RNAs in humans. By analysing sequencing data from plasma-derived RNA from 40 individuals, here we identified over a thousand human extracellular RNAs including microRNAs, piwi-interacting RNA (piRNA), and small nucleolar RNAs. Using a targeted quantitative PCR with reverse transcription approach in an additional 2,763 individuals, we characterized almost 500 of the most abundant extracellular transcripts including microRNAs, piRNAs and small nucleolar RNAs. The presence in plasma of many non-microRNA small-RNAs was confirmed in an independent cohort. We present comprehensive data to demonstrate the broad and consistent detection of diverse classes of circulating non-cellular small-RNAs from a large population.

2019 ◽  
Author(s):  
Alice Lunardon ◽  
Nathan R. Johnson ◽  
Emily Hagerott ◽  
Tamia Phifer ◽  
Seth Polydore ◽  
...  

AbstractPlant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but comprise only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large dataset of published and newly generated sRNA sequencing data (1,333 sRNA-seq libraries containing over 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding over 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24 nucleotide and 21 nucleotide siRNAs, respectively. 24 nucleotide-dominated siRNA loci usually occurred in intergenic regions, especially at the 5’-flanking regions of protein-coding genes. In contrast, 21 nucleotide-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21 nucleotide-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, while mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible at http://plantsmallrnagenes.science.psu.edu.


1993 ◽  
Vol 13 (7) ◽  
pp. 4382-4390
Author(s):  
O J Rimoldi ◽  
B Raghu ◽  
M K Nag ◽  
G L Eliceiri

We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.


2011 ◽  
Vol 18 (9) ◽  
pp. 1075-1082 ◽  
Author(s):  
Eivind Valen ◽  
Pascal Preker ◽  
Peter Refsing Andersen ◽  
Xiaobei Zhao ◽  
Yun Chen ◽  
...  

2020 ◽  
Vol 216 (6) ◽  
pp. 152937
Author(s):  
Li Huang ◽  
Xu-Zhi Liang ◽  
Yun Deng ◽  
Yong-Biao Liang ◽  
Xu Zhu ◽  
...  

2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Anna Maria Mleczko ◽  
Kamilla Bąkowska-Żywicka

Small nucleolar RNAs (snoRNAs) are molecules placed in the cell nucleolus and in Cajal bodies. Many scientific reports clearly show that snoRNAs are not only responsible for modifications of other RNAs but also possess multiple other functions such as metabolic stress regulation or modulation of alternative splicing. Full-length snoRNAs as well as small RNAs derived from snoRNAs have been implied in human diseases such as cancer or Prader – Willi Syndrome.  In this review we would like to describe these non – canonical roles of snoRNAs and their derivatives  with the emphasis on their role in human diseases. 


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Guo ◽  
Shilin Zhao ◽  
Quanhu Sheng ◽  
Mingsheng Guo ◽  
Brian Lehmann ◽  
...  

The most popular RNA library used for RNA sequencing is the poly(A) captured RNA library. This library captures RNA based on the presence of poly(A) tails at the 3′ end. Another type of RNA library for RNA sequencing is the total RNA library which differs from the poly(A) library by capture method and price. The total RNA library costs more and its capture of RNA is not dependent on the presence of poly(A) tails. In practice, only ribosomal RNAs and small RNAs are washed out in the total RNA library preparation. To evaluate the ability of detecting RNA for both RNA libraries we designed a study using RNA sequencing data of the same two breast cancer cell lines from both RNA libraries. We found that the RNA expression values captured by both RNA libraries were highly correlated. However, the number of RNAs captured was significantly higher for the total RNA library. Furthermore, we identify several subsets of protein coding RNAs that were not captured efficiently by the poly(A) library. One of the most noticeable is the histone-encode genes, which lack the poly(A) tail.


2021 ◽  
Author(s):  
◽  
Mirko Brüggemann

Most cellular processes are regulated by RNA-binding proteins (RBPs). These RBPs usually use defined binding sites to recognize and directly interact with their target RNA molecule. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) experiments are an important tool to de- scribe such interactions in cell cultures in-vivo. This experimental protocol yields millions of individual sequencing reads from which the binding spec- trum of the RBP under study can be deduced. In this PhD thesis I studied how RNA processing is driven from RBP binding by analyzing iCLIP-derived sequencing datasets. First, I described a complete data analysis pipeline to detect RBP binding sites from iCLIP sequencing reads. This workflow covers all essential process- ing steps, from the first quality control to the final annotation of binding sites. I described the accurate integration of biological iCLIP replicates to boost the initial peak calling step while ensuring high specificity through replicate re- producibility analysis. Further I proposed a routine to level binding site width to streamline downstream analysis processes. This was exemplified in the re- analysis of the binding spectrum of the U2 small nuclear RNA auxiliary factor 2 (U2AF2, U2AF65). I recaptured the known dominance of U2AF65 to bind to intronic sequences of protein-coding genes, where it likely recognizes the polypyrimidine tract as part of the core spliceosome machinery. In the second part of my thesis, I analyzed the binding spectrum of the serine and arginine rich splicing factor 6 (SRSF6) in the context of diabetes. In pancreatic beta-cells, the expression of SRSF6 is regulated by the transcription factor GLIS3, which encodes for a diabetes susceptibility gene. It is known that SRSF6 promotes beta-cell death through the splicing dysregulation of genes essential to beta-cell function and survival. However, the exact mechanism of how these RNAs are targeted by SRSF6 remains poorly understood. Here, I applied the defined iCLIP processing pipeline to describe the binding landscape of the splicing factor SRSF6 in the human pancreatic beta-cell line EndoC-H1. The initial binding sites definition revealed a predominant binding to coding sequences (CDS) of protein-coding genes. This was followed up by extensive motif analysis which revealed a so far, in human, unknown purine-rich binding motif. SRSF6 seemed to specifically recognize repetitions of the triplet GAA. I also showed that the number of contiguous triplets correlated with increasing binding site strength. I further integrated RNA-sequencing data from the same cell type, with SRSF6 in KD and in basal conditions, to analyze SRSF6- related splicing changes. I showed that the exact positioning of SRSF6 on alternatively spliced exons regulates the produced transcript isoforms. This mechanism seemed to control exons in several known susceptibility genes for diabetes. In summary, in my PhD thesis, I presented a comprehensive workflow for the processing of iCLIP-derived sequencing data. I applied this pipeline on a dataset from pancreatic beta-cells to unveil the impact of SRSF6-mediated splicing changes. Thus, my analysis provides novel insights into the regulation of diabetes susceptibility genes.


2019 ◽  
Vol 8 (31) ◽  
Author(s):  
Rikky W. Purbojati ◽  
Daniela I. Drautz-Moses ◽  
Akira Uchida ◽  
Anthony Wong ◽  
Megan E. Clare ◽  
...  

Brevundimonas sp. strain SGAir0440 was isolated from indoor air samples collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data, resulting in one circular chromosome with a length of 3.1 Mbp. The genome consists of 3,033 protein-coding genes, 48 tRNAs, and 6 rRNA operons.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jun Yao ◽  
Douglas C Wu ◽  
Ryan M Nottingham ◽  
Alan M Lambowitz

Human plasma contains > 40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from > 19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised intron RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.


Sign in / Sign up

Export Citation Format

Share Document