scholarly journals Identification of protein-protected mRNA fragments and structured excised intron RNAs in human plasma by TGIRT-seq peak calling

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jun Yao ◽  
Douglas C Wu ◽  
Ryan M Nottingham ◽  
Alan M Lambowitz

Human plasma contains > 40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from > 19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised intron RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.

2020 ◽  
Author(s):  
Jun Yao ◽  
Douglas C. Wu ◽  
Ryan M. Nottingham ◽  
Alan M. Lambowitz

SummaryHuman plasma contains >40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from >19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised introns RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Hilary Coller ◽  
Huiling Huang ◽  
Mithun Mitra ◽  
Kaiser Atai ◽  
Kirthana Sarathy

2015 ◽  
Vol 12 (5) ◽  
pp. 6568-6576 ◽  
Author(s):  
QI LIAO ◽  
YUNLIANG WANG ◽  
JIA CHENG ◽  
DONGJUN DAI ◽  
XINGYU ZHOU ◽  
...  

Burns ◽  
2020 ◽  
Vol 46 (5) ◽  
pp. 1128-1135 ◽  
Author(s):  
Wenchang Yu ◽  
Zaiwen Guo ◽  
Pengfei Liang ◽  
Bimei Jiang ◽  
Le Guo ◽  
...  

2020 ◽  
Vol 49 (D1) ◽  
pp. D962-D968 ◽  
Author(s):  
Zhao Li ◽  
Lin Liu ◽  
Shuai Jiang ◽  
Qianpeng Li ◽  
Changrui Feng ◽  
...  

Abstract Expression profiles of long non-coding RNAs (lncRNAs) across diverse biological conditions provide significant insights into their biological functions, interacting targets as well as transcriptional reliability. However, there lacks a comprehensive resource that systematically characterizes the expression landscape of human lncRNAs by integrating their expression profiles across a wide range of biological conditions. Here, we present LncExpDB (https://bigd.big.ac.cn/lncexpdb), an expression database of human lncRNAs that is devoted to providing comprehensive expression profiles of lncRNA genes, exploring their expression features and capacities, identifying featured genes with potentially important functions, and building interactions with protein-coding genes across various biological contexts/conditions. Based on comprehensive integration and stringent curation, LncExpDB currently houses expression profiles of 101 293 high-quality human lncRNA genes derived from 1977 samples of 337 biological conditions across nine biological contexts. Consequently, LncExpDB estimates lncRNA genes’ expression reliability and capacities, identifies 25 191 featured genes, and further obtains 28 443 865 lncRNA-mRNA interactions. Moreover, user-friendly web interfaces enable interactive visualization of expression profiles across various conditions and easy exploration of featured lncRNAs and their interacting partners in specific contexts. Collectively, LncExpDB features comprehensive integration and curation of lncRNA expression profiles and thus will serve as a fundamental resource for functional studies on human lncRNAs.


1999 ◽  
Vol 45 (6) ◽  
pp. 807-813 ◽  
Author(s):  
Katinka A Schatteman ◽  
Filip J Goossens ◽  
Simon S Scharpé ◽  
Hugo M Neels ◽  
Dirk F Hendriks

Abstract Background: Procarboxypeptidase U (proCPU) is a novel proenzyme found in human plasma. The active form, carboxypeptidase U (CPU; EC 3.4.17.20), retards the rate of fibrinolysis through its ability to cleave C-terminal lysine residues on fibrin partially degraded by plasmin. This reduces the number of high-affinity plasminogen-binding sites on fibrin. Methods: We developed an assay to determine the proCPU concentration in human plasma. The assay involved quantitative conversion of proCPU to active CPU by thrombin-thrombomodulin, a very efficient activator of proCPU, followed by determination of the enzymatic activity of CPU with the substrate hippuryl-l-arginine, using an HPLC-assisted determination of the released hippuric acid. Using this method, we established a reference interval based on 490 healthy individuals. Results: The mean proCPU concentration, determined after activation of the zymogen in diluted plasma and expressed as CPU activity, was 964 U/L, with a SD of 155 U/L. The population showed a gaussian distribution. However, we noticed important differences related to age and the use of hormone preparations. Conclusions: The sensitivity and precision of the method make it suitable for routine clinical determinations and as a reference procedure.


2013 ◽  
Vol 54 ◽  
pp. 1-16 ◽  
Author(s):  
Michael B. Clark ◽  
Anupma Choudhary ◽  
Martin A. Smith ◽  
Ryan J. Taft ◽  
John S. Mattick

The ability to sequence genomes and characterize their products has begun to reveal the central role for regulatory RNAs in biology, especially in complex organisms. It is now evident that the human genome contains not only protein-coding genes, but also tens of thousands of non–protein coding genes that express small and long ncRNAs (non-coding RNAs). Rapid progress in characterizing these ncRNAs has identified a diverse range of subclasses, which vary widely in size, sequence and mechanism-of-action, but share a common functional theme of regulating gene expression. ncRNAs play a crucial role in many cellular pathways, including the differentiation and development of cells and organs and, when mis-regulated, in a number of diseases. Increasing evidence suggests that these RNAs are a major area of evolutionary innovation and play an important role in determining phenotypic diversity in animals.


2021 ◽  
Author(s):  
◽  
Mirko Brüggemann

Most cellular processes are regulated by RNA-binding proteins (RBPs). These RBPs usually use defined binding sites to recognize and directly interact with their target RNA molecule. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) experiments are an important tool to de- scribe such interactions in cell cultures in-vivo. This experimental protocol yields millions of individual sequencing reads from which the binding spec- trum of the RBP under study can be deduced. In this PhD thesis I studied how RNA processing is driven from RBP binding by analyzing iCLIP-derived sequencing datasets. First, I described a complete data analysis pipeline to detect RBP binding sites from iCLIP sequencing reads. This workflow covers all essential process- ing steps, from the first quality control to the final annotation of binding sites. I described the accurate integration of biological iCLIP replicates to boost the initial peak calling step while ensuring high specificity through replicate re- producibility analysis. Further I proposed a routine to level binding site width to streamline downstream analysis processes. This was exemplified in the re- analysis of the binding spectrum of the U2 small nuclear RNA auxiliary factor 2 (U2AF2, U2AF65). I recaptured the known dominance of U2AF65 to bind to intronic sequences of protein-coding genes, where it likely recognizes the polypyrimidine tract as part of the core spliceosome machinery. In the second part of my thesis, I analyzed the binding spectrum of the serine and arginine rich splicing factor 6 (SRSF6) in the context of diabetes. In pancreatic beta-cells, the expression of SRSF6 is regulated by the transcription factor GLIS3, which encodes for a diabetes susceptibility gene. It is known that SRSF6 promotes beta-cell death through the splicing dysregulation of genes essential to beta-cell function and survival. However, the exact mechanism of how these RNAs are targeted by SRSF6 remains poorly understood. Here, I applied the defined iCLIP processing pipeline to describe the binding landscape of the splicing factor SRSF6 in the human pancreatic beta-cell line EndoC-H1. The initial binding sites definition revealed a predominant binding to coding sequences (CDS) of protein-coding genes. This was followed up by extensive motif analysis which revealed a so far, in human, unknown purine-rich binding motif. SRSF6 seemed to specifically recognize repetitions of the triplet GAA. I also showed that the number of contiguous triplets correlated with increasing binding site strength. I further integrated RNA-sequencing data from the same cell type, with SRSF6 in KD and in basal conditions, to analyze SRSF6- related splicing changes. I showed that the exact positioning of SRSF6 on alternatively spliced exons regulates the produced transcript isoforms. This mechanism seemed to control exons in several known susceptibility genes for diabetes. In summary, in my PhD thesis, I presented a comprehensive workflow for the processing of iCLIP-derived sequencing data. I applied this pipeline on a dataset from pancreatic beta-cells to unveil the impact of SRSF6-mediated splicing changes. Thus, my analysis provides novel insights into the regulation of diabetes susceptibility genes.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5651
Author(s):  
Eleftheria Papaioannou ◽  
María del Pilar González-Molina ◽  
Ana M. Prieto-Muñoz ◽  
Laura Gámez-Reche ◽  
Alicia González-Martín

Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document