scholarly journals Franckeite as a naturally occurring van der Waals heterostructure

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Aday J. Molina-Mendoza ◽  
Emerson Giovanelli ◽  
Wendel S. Paz ◽  
Miguel Angel Niño ◽  
Joshua O. Island ◽  
...  
2021 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno-Da Silva ◽  
Palmira Villa ◽  
Luisa Ruiz-González ◽  
Cristina Navío ◽  
...  

We show that thiol–ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. In this way, we provide a pathway towards 2D–2D–0D mixed-dimensional heterostructures.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Arindam Dasgupta ◽  
Jie Gao ◽  
Xiaodong Yang

AbstractThe mechanical exfoliation of naturally occurring layered materials has emerged as an easy and effective method for achieving ultrathin van der Waals (vdW) heterostructures with well-defined lattice orientations of the constituent two-dimensional (2D) material layers. Cylindrite is one such naturally occurring vdW heterostructure, where the superlattice is composed of alternating stacks of SnS2-like and PbS-like layers. Although the constituent 2D lattices are isotropic, inhomogeneous strain occurring from local atomic alignment for forcing the commensuration makes the cylindrite superlattice structurally anisotropic. Here, we demonstrate the highly anisotropic optical responses of cylindrite thin flakes induced by the anisotropic crystal structure, including angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our results provide a promising approach for identifying various natural vdW heterostructure-based 2D materials with tailored optical properties and can be harnessed for realizing anisotropic optical devices for on-chip photonic circuits and optical information processing.


2019 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Cristina Navío ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.


Author(s):  
Viviane Zurdo Costa ◽  
Liangbo Liang ◽  
Sam Vaziri ◽  
Addison Miller ◽  
Eric Pop ◽  
...  

2019 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Andres Castellanos-Gomez ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.


Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Cristina Navío ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.


2021 ◽  
Vol 494 ◽  
pp. 229712
Author(s):  
Yue-E Huang ◽  
Weilin Lin ◽  
Chenguang Shi ◽  
Li Li ◽  
Kaiqing Fan ◽  
...  

2021 ◽  
Vol 23 (6) ◽  
pp. 3963-3973
Author(s):  
Jianxun Song ◽  
Hua Zheng ◽  
Minxia Liu ◽  
Geng Zhang ◽  
Dongxiong Ling ◽  
...  

The structural, electronic and optical properties of a new vdW heterostructure, C2N/g-ZnO, with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Γ point are extensively studied by DFT calculations.


2021 ◽  
Vol 409 ◽  
pp. 128178
Author(s):  
Yixue Xu ◽  
Xiaoli Jin ◽  
Teng Ge ◽  
Haiquan Xie ◽  
Ruixue Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document