scholarly journals Natural van der Waals heterostructure cylindrite with highly anisotropic optical responses

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Arindam Dasgupta ◽  
Jie Gao ◽  
Xiaodong Yang

AbstractThe mechanical exfoliation of naturally occurring layered materials has emerged as an easy and effective method for achieving ultrathin van der Waals (vdW) heterostructures with well-defined lattice orientations of the constituent two-dimensional (2D) material layers. Cylindrite is one such naturally occurring vdW heterostructure, where the superlattice is composed of alternating stacks of SnS2-like and PbS-like layers. Although the constituent 2D lattices are isotropic, inhomogeneous strain occurring from local atomic alignment for forcing the commensuration makes the cylindrite superlattice structurally anisotropic. Here, we demonstrate the highly anisotropic optical responses of cylindrite thin flakes induced by the anisotropic crystal structure, including angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our results provide a promising approach for identifying various natural vdW heterostructure-based 2D materials with tailored optical properties and can be harnessed for realizing anisotropic optical devices for on-chip photonic circuits and optical information processing.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Arindam Dasgupta ◽  
Xiaodong Yang ◽  
Jie Gao

AbstractLengenbachite is a naturally occurring layered mineral formed with alternating stacks of two constituent PbS-like and M2S3-like two-dimensional (2D) material layers due to the phase segregation process during the formation. Here, we demonstrate to achieve van der Waals (vdW) heterostructures of lengenbachite down to a few layer-pair thickness by mechanical exfoliation of bulk lengenbachite mineral. The incommensurability between the constituent isotropic 2D material layers makes the formed vdW heterostructure exhibit strong in-plane structural anisotropy, which leads to highly anisotropic optical responses in lengenbachite thin flakes, including anisotropic Raman scattering, linear dichroism, and anisotropic third-harmonic generation. Moreover, we exploit the nonlinear optical anisotropy for polarization-dependent intensity modulation of the converted third-harmonic optical vortices. Our study establishes lengenbachite as a new natural vdW heterostructure-based 2D material with unique optical properties for realizing anisotropic optical devices for photonic integrated circuits and optical information processing.


2021 ◽  
Vol 23 (6) ◽  
pp. 3963-3973
Author(s):  
Jianxun Song ◽  
Hua Zheng ◽  
Minxia Liu ◽  
Geng Zhang ◽  
Dongxiong Ling ◽  
...  

The structural, electronic and optical properties of a new vdW heterostructure, C2N/g-ZnO, with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Γ point are extensively studied by DFT calculations.


2021 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno-Da Silva ◽  
Palmira Villa ◽  
Luisa Ruiz-González ◽  
Cristina Navío ◽  
...  

We show that thiol–ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. In this way, we provide a pathway towards 2D–2D–0D mixed-dimensional heterostructures.


2021 ◽  
Author(s):  
Mohammad Ubaid ◽  
Anver Aziz ◽  
Bhalchandra S. Pujari

We investigate a van der Waals heterostructure constructed using BP and C3N and investigate its use as an anode for lithium-, sodium- and potassium-ion batteries.


2020 ◽  
Vol 22 (9) ◽  
pp. 4946-4956 ◽  
Author(s):  
Wenyu Guo ◽  
Xun Ge ◽  
Shoutian Sun ◽  
Yiqun Xie ◽  
Xiang Ye

The structural, mechanical and electronic properties of the MoSSe/WSSe van der Waals (vdW) heterostructure under various degrees of horizontal and vertical strain are systematically investigated based on first-principles methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ravi P. N. Tripathi ◽  
Xiaodong Yang ◽  
Jie Gao

AbstractMulti-element layered materials enable the use of stoichiometric variation to engineer their optical responses at subwavelength scale. In this regard, naturally occurring van der Waals minerals allow us to harness a wide range of chemical compositions, crystal structures and lattice symmetries for layered materials under atomically thin limit. Recently, one type of naturally occurring sulfide mineral, ternary teallite has attained significant interest in the context of thermoelectric, optoelectronic, and photovoltaic applications, but understanding of light-matter interactions in such ternary teallite crystals is scarcely available. Herein, polarization-dependent linear and nonlinear optical responses in mechanically exfoliated teallite crystals are investigated including anisotropic Raman modes, wavelength-dependent linear dichroism, optical band gap evolution, and anisotropic third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of teallite crystal is estimated using the thickness-dependent THG emission process. We anticipate that our findings will open the avenue to a better understanding of the tailored light-matter interactions in complex multi-element layered materials and their implications in optical sensors, frequency modulators, integrated photonic circuits, and other nonlinear signal processing applications.


2020 ◽  
Vol 22 (26) ◽  
pp. 14787-14795
Author(s):  
Wenzhen Dou ◽  
Anping Huang ◽  
Yuhang Ji ◽  
Xiaodong Yang ◽  
Yanbo Xin ◽  
...  

The BP/SnSe vdW heterostructure is a promising photovoltaic materials and the power conversion efficiency can reach to 17.24%.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Aday J. Molina-Mendoza ◽  
Emerson Giovanelli ◽  
Wendel S. Paz ◽  
Miguel Angel Niño ◽  
Joshua O. Island ◽  
...  

2019 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Cristina Navío ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.


Author(s):  
Viviane Zurdo Costa ◽  
Liangbo Liang ◽  
Sam Vaziri ◽  
Addison Miller ◽  
Eric Pop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document