scholarly journals Covalent Chemistry on a Van Der Waals Heterostructure

2019 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Cristina Navío ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.

2019 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Andres Castellanos-Gomez ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.


Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Cristina Navío ◽  
...  

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure, with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub>reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore remains operative and shows negligible electronic interactions with franckeite in the ground state, while its fluorescence is strongly quenched upon photoexcitation.


2021 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno ◽  
Palmira Villa ◽  
Luisa R. González ◽  
Cristina Navío ◽  
...  

<p>The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D‑2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S–C covalent bond, while Raman and HR-TEM show that the SnS<sub>2</sub>-PbS alternating structure of franckeite is preserved, and suggest that SnS<sub>2</sub> reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore ground state remains operative, showing negligible ground-state interactions with the franckeite. Excited-state interactions across the hybrid interface are revealed. Time-resolved photoluminescence confirms the presence of excited-state de-activation in the linked porphyrin ascribed to energy transfer to the franckeite.</p>


2021 ◽  
Author(s):  
Julia Villalva ◽  
Sara Moreno-Da Silva ◽  
Palmira Villa ◽  
Luisa Ruiz-González ◽  
Cristina Navío ◽  
...  

We show that thiol–ene-like “click” chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. In this way, we provide a pathway towards 2D–2D–0D mixed-dimensional heterostructures.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Arindam Dasgupta ◽  
Jie Gao ◽  
Xiaodong Yang

AbstractThe mechanical exfoliation of naturally occurring layered materials has emerged as an easy and effective method for achieving ultrathin van der Waals (vdW) heterostructures with well-defined lattice orientations of the constituent two-dimensional (2D) material layers. Cylindrite is one such naturally occurring vdW heterostructure, where the superlattice is composed of alternating stacks of SnS2-like and PbS-like layers. Although the constituent 2D lattices are isotropic, inhomogeneous strain occurring from local atomic alignment for forcing the commensuration makes the cylindrite superlattice structurally anisotropic. Here, we demonstrate the highly anisotropic optical responses of cylindrite thin flakes induced by the anisotropic crystal structure, including angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our results provide a promising approach for identifying various natural vdW heterostructure-based 2D materials with tailored optical properties and can be harnessed for realizing anisotropic optical devices for on-chip photonic circuits and optical information processing.


Carbon ◽  
2018 ◽  
Vol 131 ◽  
pp. 246-257 ◽  
Author(s):  
Akinola D. Oyedele ◽  
Christopher M. Rouleau ◽  
David B. Geohegan ◽  
Kai Xiao

2018 ◽  
Vol 6 (34) ◽  
pp. 16590-16599 ◽  
Author(s):  
Rui Gusmão ◽  
Zdeněk Sofer ◽  
Jan Luxa ◽  
Martin Pumera

Naturally occurring van der Waals heterostructures (vdWH) undergo liquid-phase shear exfoliation and are applied in electrocatalytic energy reactions.


2021 ◽  
Author(s):  
Francis Opoku ◽  
Osei Akoto ◽  
Samuel Osei-Bonsu Oppong ◽  
Anthony Apeke Adimado

Sustainable hydrogen (H2) production via photocatalytic water splitting is considered the most promising energy storage, where two-dimensional van der Waals heterostructure, composed of two or more 2D monolayer materials, has...


Sign in / Sign up

Export Citation Format

Share Document