scholarly journals A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance

2016 ◽  
Vol 22 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Cholsoon Jang ◽  
Sungwhan F Oh ◽  
Shogo Wada ◽  
Glenn C Rowe ◽  
Laura Liu ◽  
...  
2019 ◽  
Vol 51 (11) ◽  
pp. 1-11 ◽  
Author(s):  
Ji Hyeon Lee ◽  
Young-ra Cho ◽  
Ji Hye Kim ◽  
Jongwook Kim ◽  
Hae Yun Nam ◽  
...  

AbstractBranched-chain amino acid (BCAA) catabolism and high levels of enzymes in the BCAA metabolic pathway have recently been shown to be associated with cancer growth and survival. However, the precise roles of BCAA metabolism in cancer growth and survival remain largely unclear. Here, we found that BCAA metabolism has an important role in human pancreatic ductal adenocarcinoma (PDAC) growth by regulating lipogenesis. Compared with nontransformed human pancreatic ductal (HPDE) cells, PDAC cells exhibited significantly elevated BCAA uptake through solute carrier transporters, which were highly upregulated in pancreatic tumor tissues compared with normal tissues. Branched-chain amino-acid transaminase 2 (BCAT2) knockdown markedly impaired PDAC cell proliferation, but not HPDE cell proliferation, without significant alterations in glutamate or reactive oxygen species levels. Furthermore, PDAC cell proliferation, but not HPDE cell proliferation, was substantially inhibited upon knockdown of branched-chain α-keto acid dehydrogenase a (BCKDHA). Interestingly, BCKDHA knockdown had no significant effect on mitochondrial metabolism; that is, neither the level of tricarboxylic acid cycle intermediates nor the oxygen consumption rate was affected. However, BCKDHA knockdown significantly inhibited fatty-acid synthesis, indicating that PDAC cells may utilize BCAAs as a carbon source for fatty-acid biosynthesis. Overall, our findings show that the BCAA metabolic pathway may provide a novel therapeutic target for pancreatic cancer.


1985 ◽  
Vol 227 (2) ◽  
pp. 651-660 ◽  
Author(s):  
T W Stephens ◽  
A J Higgins ◽  
G A Cook ◽  
R A Harris

Oxfenicine [S-2-(4-hydroxyphenyl)glycine] is transaminated in heart and liver to 4-hydroxyphenylglyoxylate, an inhibitor of fatty acid oxidation shown in this study to act at the level of carnitine palmitoyltransferase I (EC 2.3.1.21). Oxfenicine was an effective inhibitor of fatty acid oxidation in heart, but not in liver. Tissue specificity of oxfenicine inhibition of fatty acid oxidation was due to greater oxfenicine transaminase activity in heart and to greater sensitivity of heart carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate [I50 (concentration giving 50% inhibition) of 11 and 510 microM for the enzymes of heart and liver mitochondria, respectively]. Branched-chain-amino-acid aminotransferase (isoenzyme I, EC 2.6.1.42) was responsible for the transamination of oxfenicine in heart. A positive correlation was found between the capacity of various tissues to transaminate oxfenicine and the known content of branched-chain-amino-acid aminotransferase in these tissues. Out of three observed liver oxfenicine aminotransferase activities, one may correspond to asparagine aminotransferase, but the major activity could not be identified by partial purification and characterization. As reported previously for malonyl-CoA inhibition of carnitine palmitoyltransferase I, 4-hydroxyphenylglyoxylate inhibition of this enzyme was found to be very pH-dependent. In striking contrast with the kinetics of malonyl-CoA inhibition, 4-hydroxyphenylglyoxylate inhibition was not affected by oleoyl-CoA concentration, but was partially reversed by increasing carnitine concentrations.


Sign in / Sign up

Export Citation Format

Share Document