pdac cell
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 50)

H-INDEX

7
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pietro Carotenuto ◽  
Francesco Amato ◽  
Andrea Lampis ◽  
Colin Rae ◽  
Somaieh Hedayat ◽  
...  

AbstractFOLFIRINOX, a combination of chemotherapy drugs (Fluorouracil, Oxaliplatin, Irinotecan -FOI), provides the best clinical benefit in pancreatic ductal adenocarcinoma (PDAC) patients. In this study we explore the role of miRNAs (MIR) as modulators of chemosensitivity to identify potential biomarkers of response. We find that 41 and 84 microRNA inhibitors enhance the sensitivity of Capan1 and MiaPaCa2 PDAC cells respectively. These include a MIR1307-inhibitor that we validate in further PDAC cell lines. Chemotherapy-induced apoptosis and DNA damage accumulation are higher in MIR1307 knock-out (MIR1307KO) versus control PDAC cells, while re-expression of MIR1307 in MIR1307KO cells rescues these effects. We identify binding of MIR1307 to CLIC5 mRNA through covalent ligation of endogenous Argonaute-bound RNAs cross-linking immunoprecipitation assay. We validate these findings in an in vivo model with MIR1307 disruption. In a pilot cohort of PDAC patients undergoing FOLFIRONX chemotherapy, circulating MIR1307 correlates with clinical outcome.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinsheng Ding ◽  
Hui Li ◽  
Yang Liu ◽  
Yongjie Xie ◽  
Jie Yu ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is a type of malignant tumor with a five-year survival rate of less than 10%. Gemcitabine (GEM) is the most commonly used drug for PDAC chemotherapy. However, a vast majority of patients with PDAC develop resistance after GEM treatment.MethodsWe screened for GEM resistance genes through bioinformatics analysis. We used immunohistochemistry to analyze 3-oxoacid CoA-transferase 1 (OXCT1) expression in PDAC tissues. The survival data were analyzed using the Kaplan–Meier curve. The expression levels of the genes related to OXCT1 and the NF-κB signaling pathway were quantified using real−time quantitative PCR and western blot analyses. We performed flow cytometry to detect the apoptosis rate. Colony formation assay was performed to measure the cell proliferation levels. The cytotoxicity assays of cells were conducted using RTCA. The downstream pathway of OXCT1 was identified via the Gene Set Enrichment Analysis. Tumor growth response to GEM in vivo was also determined in mouse models.ResultsBioinformatics analysis revealed that OXCT1 is the key gene leading to GEM resistance. Patients with high OXCT1 expression exhibited short relapse-free survival under GEM treatment. OXCT1 overexpression in PDAC cell lines exerted inhibitory effect on apoptosis after GEM treatment. However, the down-regulation of OXCT1 showed the opposite effect. Blocking the NF-κB signaling pathway also reduced GEM resistance of PDAC cells. Tumor growth inhibition induced by GEM in vivo reduced after OXCT1 overexpression. Moreover, the effect of OXCT1 on GEM refractoriness in PDAC cell lines was reversed through using an NF-κB inhibitor.ConclusionOXCT1 promoted GEM resistance in PDAC via the NF-κB signaling pathway both in vivo and in vitro. Our results suggest that OXCT1 could be used as a potential therapeutic target for patients with PDAC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A948-A949
Author(s):  
Maggie Phillips ◽  
Michael Ware ◽  
Cameron Herting ◽  
Thomas Mace ◽  
Shishir Maithel ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is refractory to immunotherapy due in part to cellular cross-talk with cancer associated fibroblasts (CAFs). These interactions shape the microenvironment in a manner that is profoundly immunosuppressive. Our group is identifying novel targets in the PDAC stroma that can be manipulated to enhance immunotherapy efficacy. We hypothesize dysregulation of the serine protease, CD26/DPP4 in PDAC contributes to the limited efficacy of immunotherapy. Further, we posit targeting CD26 enzymatic activity using inhibitors that are FDA-approved for adult patients with Type 2 Diabetes Mellitus can enhance the efficacy of immunotherapy in PDAC.MethodsPrimary CAFs isolated from patient PDAC resection specimens under an IRB-approved protocol, were subject to NanoString analysis.1 CD26 protein expression was measured in primary and immortalized CAFs and PDAC cells by immunoblot, flow cytometry and immunofluorescence, while ELISA detected soluble CD26. For in vivo efficacy, luciferase-expressing KPC-tumor cells were implanted orthotopically in the pancreas of immune-competent C57BL/6 mice. Bioluminescence imaging (BLI) confirmed established tumors and mice were randomized to sitagliptin (75 mg/kg in drinking water, CD26/DPP4 inhibitor), anti-PD-L1 Ab (200 ug 2x/week), or both combined for 3 weeks. Controls received vehicle or isotype control Ab. BLI utilized to track tumor progression and tissues harvested for analysis at study endpoint (day 18 of treatment).ResultsNanoString analysis identified CD26/DPP4 as significantly upregulated in RNA transcripts from primary CAFs vs. fibroblasts from normal pancreas (figure 1). We confirmed abundant CD26 expression on patient-derived CAFs and immortalized CAF cell lines, however, lower CD26 expression was observed on human PDAC cell lines (HPAC, PANC-1) by immunoblot, flow cytometry and immunofluorescence (figure 5).Abstract 904 Figure 1(A) Schema for analysis of transcript from n=10 primary CAFs (PSC) from PDAC patients vs. normal human pancreatic fibroblasts (HPPFC) via NanoString nCounter PanCancer Immune Profiling Panel. (B) Heat map of gene expression with upregulate DPP4 or CD26 transcript detected. Adapted from Mace et al., 2016.Abstract 904 Figure 2Validation of CD26 protein expression in human PDAC-derived CAF and PDAC cell lines by immunoblot analysisAbstract 904 Figure 3Analysis of surface human CD26 expression in PBMCs, PDAC-derived CAFs (h-iPSC-PDAC-1), and PDAC cells (PANC-1) by flow cytometry. Histograms representing human surface CD26 expressionAbstract 904 Figure 4Immunofluorescence analysis of CD26/DPP4 cellular localization in a human PDAC-derived CAF cell lineAbstract 904 Figure 5Combined Sitagliptin and PD-L1 blockade in a murine orthotopic model of PDAC. Fold change in tumor volume, determined by BLI, comparing baseline (Day 0 of treatment) to Day 18 of treatment. Each bar represents fold change in BLI determined tumor volume for each animalConclusionsOur results are the first to describe CD26 expression on PDAC-derived CAFs and indicate that sitagliptin augments anti-tumor activity of anti-PD-L1 in PDAC tumor-bearing mice. Our ongoing work will provide insight into specific immune cell populations responsible for efficacy of immunotherapy in murine models of PDAC, and the role of CD26 in various cellular compartments within the PDAC microenvironment.ReferencesMace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L, Young G, Zhong X, Zimmers TA, Ostrowski MC, Ludwig T, Bloomston M, Bekaii-Saab T, Lesinski GB. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 2018;67(2):320–32.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5076
Author(s):  
Faliang Wang ◽  
Kiran Vij ◽  
Lin Li ◽  
Paarth Dodhiawala ◽  
Kian-Huat Lim ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal prognosis due in large part to chemotherapy resistance. However, a small subset containing defects in the DNA damage response (DDR) pathways are chemotherapy-sensitive. Identifying intrinsic and therapeutically inducible DDR defects can improve precision and efficacy of chemotherapies for PDAC. DNA repair requires dynamic reorganization of chromatin-associated proteins, which is orchestrated by the AAA+ ATPase VCP. We recently discovered that the DDR function of VCP is selectively activated by Ser784 phosphorylation. In this paper, we show that pSer784-VCP but not total VCP levels in primary PDAC tumors negatively correlate with patient survival. In PDAC cell lines, different pSer784-VCP levels are induced by genotoxic chemotherapy agents and positively correlate with genome stability and cell survival. Causal effects of pSer784-VCP on DNA repair and cell survival were confirmed using VCP knockdown and functional rescue. Importantly, DNA damage-induced pSer784-VCP rather than total VCP levels in PDAC cell lines predict their chemotherapy response and chemo-sensitizing ability of selective VCP inhibitor NMS-873. Therefore, pSer784-VCP drives genotoxic chemotherapy resistance of PDAC, and can potentially be used as a predictive biomarker as well as a sensitizing target to enhance the chemotherapy response of PDAC.


2021 ◽  
Author(s):  
Bradley Schniers ◽  
Devaraja Rajasekaran ◽  
Ksenija Korac ◽  
Tyler Sniegowski ◽  
Vadivel Ganapathy ◽  
...  

PEPT1 is a proton-coupled peptide transporter that is upregulated in PDAC cell lines and PDXs, with little expression in normal pancreas. However, the relevance of this upregulation to cancer progression and the mechanism of upregulation have not been investigated. Herein, we show that PEPT1 is not just upregulated in a large panel of PDAC cell lines and PDXs but is also functional and transport-competent. PEPT2, another proton-coupled peptide transporter, is also overexpressed in PDAC cell lines and PDXs, but is not functional due to its intracellular localization. Using glibenclamide as a pharmacological inhibitor of PEPT1, we demonstrate in cell lines in vitro and mouse xenografts in vivothat inh­­ibition of PEPT1 reduces the proliferation of the cancer cells. These findings are supported by genetic knockdown of PEPT1 with shRNA, wherein the absence of the transporter significantly attenuates the growth of cancer cells, both in vitro and in vivo, suggesting that PEPT1 is critical for the survival of cancer cells. We also establish that the tumor-derived lactic acid (Warburg effect) in the tumor microenvironment supports the transport function of PEPT1 in the maintenance of amino acid nutrition in cancer cells by inducing MMPs and DPPIV to generate peptide substrates for PEPT1 and by generating a H+ gradient across the plasma membrane to energize PEPT1. Taken collectively, these studies demonstrate a functional link between PEPT1 and extracellular protein breakdown in the tumor microenvironment as a key determinant of pancreatic cancer growth, thus identifying PEPT1 as a potential therapeutic target for PDAC.


Author(s):  
Taoyue Yang ◽  
Peng Shen ◽  
Qun Chen ◽  
Pengfei Wu ◽  
Hao Yuan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are becoming a unique member of non-coding RNAs (ncRNAs) with emerging evidence of their regulatory roles in various cancers. However, with regards to pancreatic ductal adenocarcinoma (PDAC), circRNAs biological functions remain largely unknown and worth investigation for potential therapeutic innovation. Methods In our previous study, next-generation sequencing was used to identify differentially expressed circRNAs in 3 pairs of PDAC and adjacent normal tissues. Further validation of circRHOBTB3 expression in PDAC tissues and cell lines and gain-and-loss function experiments verified the oncogenic role of circRHOBTB3. The mechanism of circRHOBTB3 regulatory role was validated by pull-down assays, RIP, luciferase reporter assays. The autophagy response of PANC-1 and MiaPaca-2 cells were detected by mCherry-GFP-LC3B labeling and confocal microscopy, transmission electron microscopy and protein levels of LC3B or p62 via Western blot. Results circRHOBTB3 is highly expressed in PDAC cell lines and tissues, which also promotes PDAC autophagy and then progression in vitro and in vivo. Mechanistically, circRHOBTB3 directly binds to miR-600 and subsequently acts as a miRNA-sponge to maintain the expression level of miR-600-targeted gene NACC1, which facilitates the autophagy response of PDAC cells for adaptation of proliferation via Akt/mTOR pathway. Moreover, the RNA-binding protein FUS (FUS) directly binds to pre-RHOBTB3 mRNA to mediate the biogenesis of circRHOBTB3. Clinically, circRHOBTB3, miR-600 and NACC1 expression levels are correlated with the prognosis of PDAC patients and serve as independent risk factors for PDAC patients. Conclusions FUS-mediated circRHOBTB3 functions as a tumor activator to promote PDAC cell proliferation by modulating miR-600/NACC1/Akt/mTOR axis regulated autophagy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung-Hsin Kuo ◽  
Shih-Hung Yang ◽  
Ming-Feng Wei ◽  
Hsiao-Wei Lee ◽  
Yu-Wen Tien ◽  
...  

Abstract Background We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). Method and materials We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. Results We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). Conclusion Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4048
Author(s):  
Sneha Vivekanandhan ◽  
Vijay S. Madamsetty ◽  
Ramcharan Singh Angom ◽  
Shamit Kumar Dutta ◽  
Enfeng Wang ◽  
...  

PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFβ) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFβ coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3321
Author(s):  
Etienne J. Slapak ◽  
Lily Kong ◽  
Mouad el Mandili ◽  
Rienk Nieuwland ◽  
Alexander Kros ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate of all cancers. This poor prognosis results from the lack of efficient systemic treatment regimens, demanding high-dose chemotherapy that causes severe side effects. To overcome dose-dependent toxicities, we explored the efficacy of targeted drug delivery using a protease-dependent drug-release system. To this end, we developed a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSN) functionalized with an avidin–biotin gatekeeper system containing a protease linker that is specifically cleaved by tumor cells. Bioinformatic analysis identified ADAM9 as a PDAC-enriched protease, and PDAC cell-derived conditioned medium efficiently cleaved protease linkers containing ADAM9 substrates. Cleavage was PDAC specific as conditioned medium from leukocytes was unable to cleave the ADAM9 substrate. Protease linker-functionalized MSNs were efficiently capped with avidin, and cap removal was confirmed to occur in the presence of PDAC cell-derived ADAM9. Subsequent treatment of PDAC cells in vitro with paclitaxel-loaded MSNs indeed showed high cytotoxicity, whereas no cell death was observed in white blood cell-derived cell lines, confirming efficacy of the nanoparticle-mediated drug delivery system. Taken together, this research introduces a novel ADAM9-responsive, protease-dependent, drug delivery system for PDAC as a promising tool to reduce the cytotoxicity of systemic chemotherapy.


Author(s):  
Kosuke Sasaki ◽  
Shigetsugu Takano ◽  
Satoshi Tomizawa ◽  
Yoji Miyahara ◽  
Katsunori Furukawa ◽  
...  

Abstract Background Recent studies indicate that complement plays pivotal roles in promoting or suppressing cancer progression. We have previously identified C4b-binding protein α-chain (C4BPA) as a serum biomarker for the early detection of pancreatic ductal adenocarcinoma (PDAC). However, its mechanism of action remains unclear. Here, we elucidated the functional roles of C4BPA in PDAC cells and the tumor microenvironment. Methods We assessed stromal C4BPA, the C4BPA binding partner CD40, and the number of CD8+ tumor-infiltrating lymphocytes in resected human PDAC tissues via immunohistochemical staining. The biological functions of C4BPA were investigated in peripheral blood mononuclear cells (PBMCs) and human PDAC cell lines. Mouse C4BPA (mC4BPA) peptide, which is composed of 30 amino acids from the C-terminus and binds to CD40, was designed for further in vitro and in vivo experiments. In a preclinical experiment, we assessed the efficacy of gemcitabine plus nab-paclitaxel (GnP), dual immune checkpoint blockades (ICBs), and mC4BPA peptide in a mouse orthotopic transplantation model. Results Immunohistochemical analysis revealed that high stromal C4BPA and CD40 was associated with favorable PDAC prognosis (P=0.0005). Stromal C4BPA strongly correlated with the number of CD8+ tumor-infiltrating lymphocytes (P=0.001). In in vitro experiments, flow cytometry revealed that recombinant human C4BPA (rhC4BPA) stimulation increased CD4+ and CD8+ T cell numbers in PBMCs. rhC4BPA also promoted the proliferation of CD40-expressing PDAC cells. By contrast, combined treatment with gemcitabine and rhC4BPA increased PDAC cell apoptosis rate. mC4BPA peptide increased the number of murine T lymphocytes in vitro and the number of CD8+ tumor-infiltrating lymphocytes surrounding PDAC tumors in vivo. In a preclinical study, GnP/ICBs/mC4BPA peptide treatment, but not GnP treatment, led to the accumulation of a greater number of CD8+ T cells in the periphery of PDAC tumors and to greater tumor regression than did control treatment. Conclusions These findings demonstrate that the combination of GnP therapy with C4BPA inhibits PDAC progression by promoting antitumor T cell accumulation in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document