Quantitative proteomics by amino acid labeling in C. elegans

2011 ◽  
Vol 8 (10) ◽  
pp. 845-847 ◽  
Author(s):  
Julius Fredens ◽  
Kasper Engholm-Keller ◽  
Anders Giessing ◽  
Dennis Pultz ◽  
Martin Røssel Larsen ◽  
...  

Worm ◽  
2012 ◽  
Vol 1 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Julius Fredens ◽  
Nils J. Færgeman


2012 ◽  
Vol 12 (1) ◽  
pp. 363-377 ◽  
Author(s):  
Yu Ye ◽  
Guangrong Yan ◽  
Yongwen Luo ◽  
Tiezhu Tong ◽  
Xiangtao Liu ◽  
...  


2011 ◽  
Vol 83 (15) ◽  
pp. 6026-6033 ◽  
Author(s):  
Ai-Ying Nie ◽  
Lei Zhang ◽  
Guo-Quan Yan ◽  
Jun Yao ◽  
Yang Zhang ◽  
...  


2009 ◽  
Vol 81 (2) ◽  
pp. 764-771 ◽  
Author(s):  
Yingchun Zhao ◽  
Wai-Nang Paul Lee ◽  
Shu Lim ◽  
Vay Liang Go ◽  
Jing Xiao ◽  
...  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.



1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.



ChemBioChem ◽  
2019 ◽  
Vol 20 (5) ◽  
pp. 659-666 ◽  
Author(s):  
Robert B. Quast ◽  
Fataneh Fatemi ◽  
Michel Kranendonk ◽  
Emmanuel Margeat ◽  
Gilles Truan


2019 ◽  
Author(s):  
Stefan Zdraljevic ◽  
Bennett William Fox ◽  
Christine Strand ◽  
Oishika Panda ◽  
Francisco J Tenjo ◽  
...  


2020 ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated protein complexes, like shelterin in mammals, which protect telomeres from DNA damage. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to screen for proteins binding to C. elegans telomeres, and identified TEBP-1 and TEBP-2, two paralogs that associate to telomeres in vitro and in vivo. TEBP-1 and TEBP-2 are expressed in the germline and during embryogenesis. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a mortal germline, a phenotype characterized by transgenerational germline deterioration. Notably, tebp-1; tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. TEBP-1 and TEBP-2 form a telomeric complex with the known single-stranded telomere-binding proteins POT-1, POT-2, and MRT-1. Furthermore, we find that POT-1 bridges the double- stranded binders TEBP-1 and TEBP-2, with the single-stranded binders POT-2 and MRT-1. These results describe the first telomere-binding complex in C. elegans, with TEBP-1 and TEBP-2, two double-stranded telomere binders required for fertility and that mediate opposite telomere dynamics.



Sign in / Sign up

Export Citation Format

Share Document