Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species

2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Jens Christian Nielsen ◽  
Sietske Grijseels ◽  
Sylvain Prigent ◽  
Boyang Ji ◽  
Jacques Dainat ◽  
...  

2019 ◽  
Author(s):  
Yan Zhang ◽  
Jie Cao ◽  
Jingjing Wang ◽  
Yajun Cheng ◽  
Minghui Zhou ◽  
...  

Abstract It’s well-established that the CAZyme genes of genus Trametes contributed to the degradation processes of polysaccharides, including lignin or crystalline cellulose. However, the comprehensive analysis of the composition of CAZymes and the biosynthetic gene clusters of Trametes genus remain unclear. We conducted comparative analysis, detected the CAZyme genes, and predicted the biosynthetic gene clusters for 9 Trametes strains. Among 82,053 homologous clusters we obtained for genus Trametes, we identified 8,518 core genes, 60,441 accessory genes and 13,094 specific genes. Our results showed that a large proportion of CAZyme genes were catalogued into glycoside hydrolases, glycosyltransferases, and carbohydrate esterases. The predicted BGCs of Trametes genus were divided into 6 strategies and the 9 Trametes strains harbored 47.78 BGCs on average. Our study uncovers the genus Trametes exhibited an open pan-genome structure, provides insights into the genetic diversity and explores the synthetic biology of secondary metabolite production for Trametes genus.



2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ulysses Amancio de Frias ◽  
Greicy Kelly Bonifacio Pereira ◽  
María-Eugenia Guazzaroni ◽  
Rafael Silva-Rocha

Bacteria are a source of a large number of secondary metabolites with several biomedical and biotechnological applications. In recent years, there has been tremendous progress in the development of novel synthetic biology approaches both to increase the production rate of secondary metabolites of interest in native producers and to mine and reconstruct novel biosynthetic gene clusters in heterologous hosts. Here, we present the recent advances toward the engineering of novel microbial biosensors to detect the synthesis of secondary metabolites in bacteria and in the development of synthetic promoters and expression systems aiming at the construction of microbial cell factories for the production of these compounds. We place special focus on the potential of Gram-negative bacteria as a source of biosynthetic gene clusters and hosts for pathway assembly, on the construction and characterization of novel promoters for native hosts, and on the use of computer-aided design of novel pathways and expression systems for secondary metabolite production. Finally, we discuss some of the potentials and limitations of the approaches that are currently being developed and we highlight new directions that could be addressed in the field.



Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 864
Author(s):  
Woori Kim ◽  
Namil Lee ◽  
Soonkyu Hwang ◽  
Yongjae Lee ◽  
Jihun Kim ◽  
...  

Streptomyces venezuelae is well known to produce various secondary metabolites, including chloramphenicol, jadomycin, and pikromycin. Although many strains have been classified as S. venezuelae species, only a limited number of strains have been explored extensively for their genomic contents. Moreover, genomic differences and diversity in secondary metabolite production between the strains have never been compared. Here, we report complete genome sequences of three S. venezuelae strains (ATCC 10712, ATCC 10595, and ATCC 21113) harboring chloramphenicol and jadomycin biosynthetic gene clusters (BGC). With these high-quality genome sequences, we revealed that the three strains share more than 85% of total genes and most of the secondary metabolite biosynthetic gene clusters (smBGC). Despite such conservation, the strains produced different amounts of chloramphenicol and jadomycin, indicating differential regulation of secondary metabolite production at the strain level. Interestingly, antagonistic production of chloramphenicol and jadomycin was observed in these strains. Through comparison of the chloramphenicol and jadomycin BGCs among the three strains, we found sequence variations in many genes, the non-coding RNA coding regions, and binding sites of regulators, which affect the production of the secondary metabolites. We anticipate that these genome sequences of closely related strains would serve as useful resources for understanding the complex secondary metabolism and for designing an optimal production process using Streptomyces strains.



mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACT Microbes produce a plethora of secondary (or specialized) metabolites that, although not essential for primary metabolism, benefit them to survive in the environment, communicate, and influence cell differentiation. Biosynthetic gene clusters (BGCs), responsible for the production of these secondary metabolites, are readily identifiable on bacterial genome sequences. Understanding the phylogeny and distribution of BGCs helps us to predict the natural product synthesis ability of new isolates. Here, we examined 310 genomes from the Bacillus subtilis group, determined the inter- and intraspecies patterns of absence/presence for all BGCs, and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in the distribution of both known and unknown products. Further, we analyzed variations in the BGC structures of particular families encoding natural products, such as plipastatin, fengycin, iturin, mycosubtilin, and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and a few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Surprisingly, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed genomic analysis of BGCs and the remarkable phylogenetically conserved erosion of secondary metabolite biosynthetic potential in the B. subtilis group. IMPORTANCE Members of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those, the production of antifungals, which makes them promising biocontrol strains. While there are studies examining the distribution of well-known secondary metabolites in Bacilli, intraspecies clade-specific distribution has not been systematically reported for the B. subtilis group. Here, we report the complete biosynthetic potential within the B. subtilis group to explore the distribution of the biosynthetic gene clusters and to reveal an exhaustive phylogenetic conservation of secondary metabolite production within Bacillus that supports the chemodiversity within this species complex. We identify that certain gene clusters acquired deletions of genes and particular frameshift mutations, rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview guides the assignment of the secondary metabolite production potential of newly isolated Bacillus strains based on genome sequence and phylogenetic relatedness.



2014 ◽  
Vol 61 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Angel Medina ◽  
Markus Schmidt-Heydt ◽  
Alicia Rodríguez ◽  
Roberto Parra ◽  
Rolf Geisen ◽  
...  


2020 ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACTMicrobes produce a plethora of secondary metabolites that although not essential for primary metabolism benefit them to survive in the environment, communicate, and influence differentiation. Biosynthetic gene clusters (BGCs) responsible for the production of these secondary metabolites are readily identifiable on the genome sequence of bacteria. Understanding the phylogeny and distribution of BGCs helps us to predict natural product synthesis ability of new isolates. Here, we examined the inter- and intraspecies patterns of absence/presence for all BGCs identified with antiSMASH 5.0 in 310 genomes from the B. subtilis group and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in distribution for both known and unknown products. Further, we analyzed variations in the BGC structure of particular families encoding for natural products such as plipastatin, fengycin, iturin, mycosubtilin and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Uniquely, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed analysis of BGCs and the remarkable phylogenetically conserved errodation of secondary metabolite biosynthetic potential in the B. subtilis group.IMPORTANCEMembers of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those the production of antifungals makes them promising biocontrol strains. However, while there are studies examining the distribution of well-known B. subtilis metabolites, this has not yet been systematically reported for the group. Here, we report the complete biosynthetic potential within the Bacillus subtilis group species to explore the distribution of the biosynthetic gene clusters and to provide an exhaustive phylogenetic conservation of secondary metabolite production supporting the chemodiversity of Bacilli. We identify that certain gene clusters acquired deletions of genes and particular frame-shift mutations rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview presented will superbly guide assigning the secondary metabolite production potential of newly isolated strains based on genome sequence and phylogenetic relatedness.



Author(s):  
Daniel Yuri Akiyama ◽  
Marina Campos Rocha ◽  
Jonas Henrique Costa ◽  
Iran Malavazi ◽  
Taícia Pacheco Fill

ABSTRACTMost of the biosynthetic gene clusters (BGCs) found in filamentous fungi are silent under standard laboratory cultivation conditions due to the lack of expression triggering stimuli, representing a considerable drawback in drug discovery. To access the full biosynthetic potential of these microbes, studies towards the activation of cryptic BGCs are essential. Histone acetylation status is an important regulator of chromatin structure which impacts in cell physiology and, therefore, expression of biosynthetic gene clusters in filamentous fungi. Histone deacetylases (HDACs) and histone acetyl-transferases (HATs) are responsible for maintaining and controlling this process under different cell conditions. In this study, clr3, a gene encoding a histone deacetylase in Penicillium brasilianum was deleted and associated phenotypic and metabolic changes evaluated. Results indicate reduced growth under oxidative stress conditions in the Δclr3 knockout strain. Also, the production of several secondary metabolites including austin-related meroterpenoids, brasiliamides, mycotoxins such as verruculogen and penicillic acid, as well as cyclodepsipeptides was reduced in the Δclr3 strain when compared to wild-type strain. Accordingly, addition of epigenetic modulators responsible for HDAC inhibition such as suberoylanilide hydroxamic acid (SAHA) and nicotinamide (NAA) to P. brasilianum growth media also culminated in reduction of secondary metabolite production. Mass Spectrometry Imaging (MSI) was applied to compare metabolite production and spatial distribution on the colony. Results suggest that Clr3 plays an important role in secondary metabolite biosynthesis in P. brasilianum, thus offering new strategies for regulation of natural product synthesis by assessing chromatin modification in P. brasilianum.





2020 ◽  
Vol 295 (44) ◽  
pp. 14826-14839
Author(s):  
Serina L. Robinson ◽  
Barbara R. Terlouw ◽  
Megan D. Smith ◽  
Sacha J. Pidot ◽  
Timothy P. Stinear ◽  
...  

Enzymes that cleave ATP to activate carboxylic acids play essential roles in primary and secondary metabolism in all domains of life. Class I adenylate-forming enzymes share a conserved structural fold but act on a wide range of substrates to catalyze reactions involved in bioluminescence, nonribosomal peptide biosynthesis, fatty acid activation, and β-lactone formation. Despite their metabolic importance, the substrates and functions of the vast majority of adenylate-forming enzymes are unknown without tools available to accurately predict them. Given the crucial roles of adenylate-forming enzymes in biosynthesis, this also severely limits our ability to predict natural product structures from biosynthetic gene clusters. Here we used machine learning to predict adenylate-forming enzyme function and substrate specificity from protein sequences. We built a web-based predictive tool and used it to comprehensively map the biochemical diversity of adenylate-forming enzymes across >50,000 candidate biosynthetic gene clusters in bacterial, fungal, and plant genomes. Ancestral phylogenetic reconstruction and sequence similarity networking of enzymes from these clusters suggested divergent evolution of the adenylate-forming superfamily from a core enzyme scaffold most related to contemporary CoA ligases toward more specialized functions including β-lactone synthetases. Our classifier predicted β-lactone synthetases in uncharacterized biosynthetic gene clusters conserved in >90 different strains of Nocardia. To test our prediction, we purified a candidate β-lactone synthetase from Nocardia brasiliensis and reconstituted the biosynthetic pathway in vitro to link the gene cluster to the β-lactone natural product, nocardiolactone. We anticipate that our machine learning approach will aid in functional classification of enzymes and advance natural product discovery.



Sign in / Sign up

Export Citation Format

Share Document