scholarly journals Dynamic reorganization of the middle fusiform gyrus: long-term bird expertise predicts decreased face selectivity

2008 ◽  
Author(s):  
Chun-Chia Kung ◽  
Colin Ellis ◽  
Michael Tarr
2011 ◽  
Vol 23 (7) ◽  
pp. 1723-1740 ◽  
Author(s):  
Nicholas Furl ◽  
Lúcia Garrido ◽  
Raymond J. Dolan ◽  
Jon Driver ◽  
Bradley Duchaine

Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a “core” visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined “fusiform face areas” (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.


Author(s):  
N. Apurva Ratan Murty ◽  
Santani Teng ◽  
David Beeler ◽  
Anna Mynick ◽  
Aude Oliva ◽  
...  

AbstractHere we show robust face-selectivity in the lateral fusiform gyrus of congenitally blind participants during haptic exploration of 3D-printed stimuli, indicating that neither visual experience, nor fovea-biased input, nor visual expertise is necessary for face-selectivity to arise in its characteristic location. Similar resting fMRI correlation fingerprints in individual blind and sighted participants suggest a role for long-range connectivity in the specification of the cortical locus of face-selectivity.


2011 ◽  
Vol 15 (2) ◽  
pp. 321-327 ◽  
Author(s):  
Zeynep M Saygin ◽  
David E Osher ◽  
Kami Koldewyn ◽  
Gretchen Reynolds ◽  
John D E Gabrieli ◽  
...  

2020 ◽  
Vol 117 (37) ◽  
pp. 23011-23020 ◽  
Author(s):  
N. Apurva Ratan Murty ◽  
Santani Teng ◽  
David Beeler ◽  
Anna Mynick ◽  
Aude Oliva ◽  
...  

The fusiform face area responds selectively to faces and is causally involved in face perception. How does face-selectivity in the fusiform arise in development, and why does it develop so systematically in the same location across individuals? Preferential cortical responses to faces develop early in infancy, yet evidence is conflicting on the central question of whether visual experience with faces is necessary. Here, we revisit this question by scanning congenitally blind individuals with fMRI while they haptically explored 3D-printed faces and other stimuli. We found robust face-selective responses in the lateral fusiform gyrus of individual blind participants during haptic exploration of stimuli, indicating that neither visual experience with faces nor fovea-biased inputs is necessary for face-selectivity to arise in the lateral fusiform gyrus. Our results instead suggest a role for long-range connectivity in specifying the location of face-selectivity in the human brain.


2020 ◽  
Vol 65 (7) ◽  
pp. 463-472
Author(s):  
Qi Miao ◽  
Chengcheng Pu ◽  
Zhijiang Wang ◽  
Chao-Gan Yan ◽  
Chuan Shi ◽  
...  

Objective: To explore the effect of long-term antipsychotics use on the strength of functional connectivity (FC) in the brains of patients with chronic schizophrenia. Method: We collected resting-state functional magnetic resonance imaging from 15 patients with continuously treated chronic schizophrenia (TCS), 19 patients with minimally TCS (MTCS), and 20 healthy controls (HCs). Then, we evaluated and compared the whole-brain FC strength (FCS; including full-range, short-range, and long-range FCS) among patients with TCS, MTCS, and HCs. Results: Patients with TCS and MTCS showed reduced full-/short-range FC compared with the HCs. No significant differences in the whole-brain FCS (including full-range, short-range, and long-range FCS) or clinical characteristics were identified between patients with TCS and MTCS. Additionally, the FCS in the right fusiform gyrus, right inferior temporal gyrus, and right inferior occipital gyrus negatively correlated with the duration of illness and positively correlated with onset age across all patients with chronic schizophrenia. Conclusions: Regardless of the long-term use of antipsychotics, patients with chronic schizophrenia show decreased FC compared with healthy individuals. For some patients with chronic schizophrenia, the influence of long-term and minimal/short-term antipsychotic exposure on resting-state FC was similar. The decreased full- and short-range FCS in the right fusiform gyrus, right inferior temporal gyrus, and right inferior occipital gyrus may be an ongoing pathological process that is not altered by antipsychotic interventions in patients with chronic schizophrenia. Large-sample, long-term follow-up studies are still needed for further exploration.


2019 ◽  
Vol 42 ◽  
Author(s):  
John P. A. Ioannidis

AbstractNeurobiology-based interventions for mental diseases and searches for useful biomarkers of treatment response have largely failed. Clinical trials should assess interventions related to environmental and social stressors, with long-term follow-up; social rather than biological endpoints; personalized outcomes; and suitable cluster, adaptive, and n-of-1 designs. Labor, education, financial, and other social/political decisions should be evaluated for their impacts on mental disease.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document