Visualizing miRNAs in adult skeletal muscle by hybridization in situ

2006 ◽  
Author(s):  
Anna Polesskaya
Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1409-1420 ◽  
Author(s):  
R. Moore ◽  
F.S. Walsh

The spatiotemporal distribution of M-cadherin mRNA has been determined by in situ hybridization in the mouse embryo and in adult skeletal muscle following experimental regeneration and denervation. M-cadherin mRNA is highly tissue specific and is found only in developing skeletal muscle. In contrast, N-cadherin mRNA has a broader tissue distribution in the embryo, being found on both neural elements and skeletal and cardiac muscle. M-cadherin is expressed in the myotomes shortly after they form, along with the myogenic regulatory factor myogenin. M-cadherin is expressed in muscles derived from the myotomes and is detected in forelimb bud precursor cells at embryonic day 11.5. In the latter case M-cadherin expression appears co-ordinately with that of myogenin and cardiac alpha-actin. Shortly before birth, M-cadherin expression is down regulated. M-cadherin can, however, be re-expressed following experimental regeneration of skeletal muscle. Here M-cadherin is transiently expressed on regenerating myoblasts but not myotubes. Following muscle denervation no evidence was found for re-expression of M-cadherin under conditions where there was strong expression of the nicotinic acetylcholine receptor on myofibres. The highly specific tissue distribution and unique developmental profile distinguishes M-cadherin from other cadherins and suggests a role in cell surface events during early myogenesis.


2004 ◽  
Vol 286 (2) ◽  
pp. R342-R349 ◽  
Author(s):  
Richard C. Ho ◽  
Oscar Alcazar ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
Laurie J. Goodyear

Skeletal muscle expresses at least three p38 MAPKs (α, β, γ). However, no studies have examined the potential regulation of glucose uptake by p38γ, the isoform predominantly expressed in skeletal muscle and highly regulated by exercise. L6 myotubes were transfected with empty vector (pCAGGS), activating MKK6 (MKK6CA), or p38γ-specific siRNA. MKK6CA-transfected cells had higher rates of basal 2-deoxy-d-[3H]glucose (2-DG) uptake ( P < 0.05) but lower rates of 2,4-dinitrophenol (DNP)-stimulated glucose uptake, an uncoupler of oxidative phosphorylation that operates through an insulin-independent mechanism ( P < 0.05). These effects were reversed when MKK6CA cells were cotransfected with p38γ-specific siRNA. To determine whether the p38γ isoform is involved in the regulation of contraction-stimulated glucose uptake in adult skeletal muscle, the tibialis anterior muscles of mice were injected with pCAGGS or wild-type p38γ (p38γWT) followed by intramuscular electroporation. Basal and contraction-stimulated 2-DG uptake in vivo was determined 14 days later. Overexpression of p38γWT resulted in higher basal rates of glucose uptake compared with pCAGGS ( P < 0.05). Muscles overexpressing p38γWT showed a trend for lower in situ contraction-mediated glucose uptake ( P = 0.08) and significantly lower total GLUT4 levels ( P < 0.05). These data suggest that p38γ increases basal glucose uptake and decreases DNP- and contraction-stimulated glucose uptake, partially by affecting levels of glucose transporter expression in skeletal muscle. These findings are consistent with the hypothesis that activation of stress kinases such as p38 are negative regulators of stimulated glucose uptake in peripheral tissues.


2011 ◽  
Vol 111 (6) ◽  
pp. 1710-1718 ◽  
Author(s):  
Leandro Bueno Bergantin ◽  
Leonardo Bruno Figueiredo ◽  
Rosely Oliveira Godinho

The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3–4 to 24 mo old) is 45–25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20–28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40–50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


2000 ◽  
Vol 279 (5) ◽  
pp. C1656-C1664 ◽  
Author(s):  
B. Paul Herring ◽  
Shelley Dixon ◽  
Patricia J. Gallagher

The purpose of this study was to characterize myosin light chain kinase (MLCK) expression in cardiac and skeletal muscle. The only classic MLCK detected in cardiac tissue, purified cardiac myocytes, and in a cardiac myocyte cell line (AT1) was identical to the 130-kDa smooth muscle MLCK (smMLCK). A complex pattern of MLCK expression was observed during differentiation of skeletal muscle in which the 220-kDa-long or “nonmuscle” form of MLCK is expressed in undifferentiated myoblasts. Subsequently, during myoblast differentiation, expression of the 220-kDa MLCK declines and expression of this form is replaced by the 130-kDa smMLCK and a skeletal muscle-specific isoform, skMLCK in adult skeletal muscle. These results demonstrate that the skMLCK is the only tissue-specific MLCK, being expressed in adult skeletal muscle but not in cardiac, smooth, or nonmuscle tissues. In contrast, the 130-kDa smMLCK is ubiquitous in all adult tissues, including skeletal and cardiac muscle, demonstrating that, although the 130-kDa smMLCK is expressed at highest levels in smooth muscle tissues, it is not a smooth muscle-specific protein.


1993 ◽  
Vol 13 (1) ◽  
pp. 9-17 ◽  
Author(s):  
J P Concordet ◽  
M Salminen ◽  
J Demignon ◽  
C Moch ◽  
P Maire ◽  
...  

The human aldolase A gene is transcribed from three different promoters, pN, pM, and pH, all of which are clustered within a small 1.6-kbp DNA domain. pM, which is highly specific to adult skeletal muscle, lies in between pN and pH, which are ubiquitous but particularly active in heart and skeletal muscle. A ubiquitous enhancer, located just upstream of pH start sites, is necessary for the activity of both pH and pN in transient transfection assays. Using transgenic mice, we studied the sequence controlling the muscle-specific promoter pM and the relations between the three promoters and the ubiquitous enhancer. A 4.3-kbp fragment containing the three promoters and the ubiquitous enhancer showed an expression pattern consistent with that known in humans. In addition, while pH was active in both fast and slow skeletal muscles, pM was active only in fast muscle. pM activity was unaltered by the deletion of a 1.8-kbp region containing the ubiquitous enhancer and the pH promoter, whereas pN remained active only in fast skeletal muscle. These findings suggest that in fast skeletal muscle, a tissue-specific enhancer was acting on both pN and pM, whereas in other tissues, the ubiquitous enhancer was necessary for pN activity. Finally, a 2.6-kbp region containing the ubiquitous enhancer and only the pH promoter was sufficient to bring about high-level expression of pH in cardiac and skeletal muscle. Thus, while pH and pM function independently of each other, pN, remarkably, shares regulatory elements with each of them, depending on the tissue. Importantly, expression of the transgenes was independent of the integration site, as originally described for transgenes containing the beta-globin locus control region.


Sign in / Sign up

Export Citation Format

Share Document