Faculty Opinions recommendation of Adult skeletal muscle deletion of Mitofusin 1 and 2 impedes exercise performance and training capacity.

Author(s):  
Kimberly A Huey
2019 ◽  
Vol 126 (2) ◽  
pp. 341-353 ◽  
Author(s):  
Margaret B. Bell ◽  
Zachary Bush ◽  
Graham R. McGinnis ◽  
Glenn C. Rowe

Endurance exercise has been shown to be a positive regulator of skeletal muscle metabolic function. Changes in mitochondrial dynamics (fusion and fission) have been shown to influence mitochondrial oxidative capacity. We therefore tested whether genetic disruption of mitofusins (Mfns) affected exercise performance in adult skeletal muscle. We generated adult-inducible skeletal muscle-specific Mfn1 (iMS-Mfn1KO), Mfn2 (iMS-Mfn2KO), and Mfn1/2 (iMS-MfnDKO) knockout mice. We assessed exercise capacity by performing a treadmill time to exhaustion stress test before deletion and up to 8 wk after deletion. Analysis of either the iMS-Mfn1KO or the iMS-Mfn2KO did not reveal an effect on exercise capacity. However, analysis of iMS-MfnDKO animals revealed a progressive reduction in exercise performance. We measured individual electron transport chain (ETC) complex activity and observed a reduction in ETC activity in both the subsarcolemmal and intermyofibrillar mitochondrial fractions specifically for NADH dehydrogenase (complex I) and cytochrome- c oxidase (complex IV), which was associated with a decrease in ETC subunit expression for these complexes. We also tested whether voluntary exercise training would prevent the decrease in exercise capacity observed in iMS-MfnDKO animals ( n = 10/group). However, after 8 wk of training we did not observe any improvement in exercise capacity or ETC subunit parameters in iMS-MfnDKO animals. These data suggest that the decrease in exercise capacity observed in the iMS-MfnDKO animals is in part the result of impaired ETC subunit expression and ETC complex activity. Taken together, these results provide strong evidence that mitochondrial fusion in adult skeletal muscle is important for exercise performance. NEW & NOTEWORTHY This study is the first to utilize an adult-inducible skeletal muscle-specific knockout model for Mitofusin (Mfn)1 and Mfn2 to assess exercise capacity. Our findings reveal a progressive decrease in exercise performance with Mfn1 and Mfn2 deletion. The decrease in exercise capacity was accompanied by impaired oxidative phosphorylation specifically for complex I and complex IV. Furthermore, voluntary exercise training was unable to rescue the impairment, suggesting that normal fusion is essential for exercise-induced mitochondrial adaptations.


2016 ◽  
Vol 311 (6) ◽  
pp. E928-E938 ◽  
Author(s):  
Christopher Ballmann ◽  
Yawen Tang ◽  
Zachary Bush ◽  
Glenn C. Rowe

Exercise has been shown to be the best intervention in the treatment of many diseases. Many of the benefits of exercise are mediated by adaptions induced in skeletal muscle. The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family of transcriptional coactivators has emerged as being key mediators of the exercise response and is considered to be essential for many of the adaptions seen in skeletal muscle. However, the contribution of the PGC-1s in skeletal muscle has been evaluated by the use of either whole body or congenital skeletal muscle-specific deletion. In these models, PGC-1s were never present, thereby opening the possibility to developmental compensation. Therefore, we generated an inducible muscle-specific deletion of PGC-1α and -1β (iMyo-PGC-1DKO), in which both PGC-1α and -β can be deleted specifically in adult skeletal muscle. These iMyo-PGC-1DKO animals were used to assess the role of both PGC-1α and -1β in adult skeletal muscle and their contribution to the exercise training response. Untrained iMyo-PGC-1DKO animals exhibited a time-dependent decrease in exercise performance 8 wk postdeletion, similar to what was observed in the congenital muscle-specific PGC-1DKOs. However, after 4 wk of voluntary training, the iMyo-PGC-1DKOs exhibited an increase in exercise performance with a similar adaptive response compared with control animals. This increase was associated with an increase in electron transport complex (ETC) expression and activity in the absence of PGC-1α and -1β expression. Taken together these data suggest that PGC-1α and -1β expression are not required for training-induced exercise performance, highlighting the contribution of PGC-1-independent mechanisms.


2019 ◽  
Vol 21 ◽  
pp. 51-67 ◽  
Author(s):  
Timothy M. Moore ◽  
Zhenqi Zhou ◽  
Whitaker Cohn ◽  
Frode Norheim ◽  
Amanda J. Lin ◽  
...  

2008 ◽  
Vol 33 (5) ◽  
pp. 1033-1041 ◽  
Author(s):  
Anna C. Kayani ◽  
James P. Morton ◽  
Anne McArdle

Mammalian adult skeletal muscle adapts to the stress of contractile activity with increased gene expression by yielding a family of highly conserved cytoprotective proteins known as heat shock proteins (HSPs). Although the exercise-induced stress response of both animal and human skeletal muscle is now well documented, the precise mechanisms underlying this adaptation remain unclear. The induction of HSPs after exercise is severely blunted in the muscle of older individuals. This review focuses on the effects of different forms of exercise and training on the induction of HSPs in the muscles of adult individuals, and examines the proposed mechanisms underlying this adaptation. Furthermore, the functional effect of the inability of the muscles of older individuals to adapt in this way is discussed, together with the proposed mechanisms underlying this maladaptation.


Sign in / Sign up

Export Citation Format

Share Document