scholarly journals Targeting self-renewal of cancer stem cells in colorectal cancer—a future treatment option?

2013 ◽  
Vol 11 (2) ◽  
pp. 75-75 ◽  
Author(s):  
Isobel Leake
2020 ◽  
Author(s):  
Chen Zhang ◽  
Yuanyuan Zhao ◽  
Yongjing Yang ◽  
Chunlian Zhong ◽  
Tianju Ji ◽  
...  

Abstract Background: Colorectal cancer (CRC) is the third most common cancer in the world known for its poor recurrence-free prognosis. Previous studies have shown that it is closely linked with cancer stem cells (CSCs), which have self-renewal potential and the capacity to differentiate into diverse populations. Nanog is an important transcription factor that functions to maintain the self-renewal and proliferation of embryonic stem cells; however, many recent studies have shown that Nanog is also highly expressed in many cancer stem cells.Methods: To investigate whether Nanog plays a crucial role in maintaining the stemness of colorectal CSCs (CCSCs), RNA interference was used to downregulate Nanog expression in the CRC stem cell line, EpCAM+CD44+HCT-116. We examined the anti-tumor function of Nanog in vitro and in vivo, using small interfering RNA.Results: Our results revealed that the Nanog mRNA expression level in CCSCs was higher than that in HCT-116 cells. We found that the depletion of Nanog inhibited proliferation and promoted apoptosis in EpCAM+CD44+HCT-116 cells. In addition, the invasive ability of EpCAM+CD44+HCT-116 cells was markedly restricted when Nanog was silenced by small interfering RNA. Furthermore, we found that the silencing of Nanog decreased tumor size and weight and improved the survival rate of tumor-bearing mice.Conclusions: In conclusion, these findings collectively demonstrate that Nanog, which is highly expressed in CRC stem cells, is a key factor in the development of tumor growth, and it may serve as a potential marker of prognosis and a novel and effective therapeutic target for the treatment of CRC.


Oncogene ◽  
2020 ◽  
Author(s):  
Christopher J. Bergin ◽  
Aïcha Zouggar ◽  
Joshua R. Haebe ◽  
Angelique N. Masibag ◽  
François M. Desrochers ◽  
...  

AbstractColorectal tumors are hierarchically organized and governed by populations of self-renewing cancer stem cells, representing one of the deadliest types of cancers worldwide. Emergence of cancer stemness phenotype depends on epigenetic reprogramming, associated with profound transcriptional changes. As described for pluripotent reprogramming, epigenetic modifiers play a key role in cancer stem cells by establishing embryonic stem-like transcriptional programs, thus impacting the balance between self-renewal and differentiation. We identified overexpression of histone methyltransferase G9a as a risk factor for colorectal cancer, associated with shorter relapse-free survival. Moreover, using human transformed pluripotent cells as a surrogate model for cancer stem cells, we observed that G9a activity is essential for the maintenance of embryonic-like transcriptional signature promoting self-renewal, tumorigenicity, and undifferentiated state. Such a role was also applicable to colorectal cancer, where inhibitors of G9a histone methyltransferase function induced intestinal differentiation while restricting tumor-initiating activity in patient-derived colorectal tumor samples. Finally, by integrating transcriptome profiling with G9a/H3K9me2 loci co-occupancy, we identified the canonical Wnt pathway, epithelial-to-mesenchyme transition, and extracellular matrix organization as potential targets of such a chromatin regulation mechanism in colorectal cancer stem cells. Overall, our findings provide novel insights on the role of G9a as a driver of cancer stem cell phenotype, promoting self-renewal, tumorigenicity, and undifferentiated state.


2018 ◽  
Vol 46 (2) ◽  
pp. 860-872 ◽  
Author(s):  
Zhengwei Leng ◽  
Qinghua Xia ◽  
Jinhuang Chen ◽  
Yong Li ◽  
Jiqian Xu ◽  
...  

Background/Aims: Although EpCAM+CD44+ cells exhibit more stem-like properties than did EpCAM-CD44- cells, the specificity of EpCAM combined with CD44 in defining CSCs needs further improvement. Lgr5 is used as a biomarker to isolate cancer stem cells (CSCs) in colorectal cancer. However, it remains unclear whether Lgr5, along with EpCAM and CD44, can further identify and define CSCs in colorectal cancer. Methods: Lgr5+CD44+EpCAM+, Lgr5+CD44+EpCAM-, Lgr5+CD44-EpCAM+, Lgr5-CD44+EpCAM+, and Lgr5-CD44-EpCAM-cells were separately isolated using fluorescence-activated cell sorting (FACS). Colony formation, self-renewal, differentiation, and tumorigenic properties of these cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression of stemness genes and CSC- and epithelial-mesenchymal transition (EMT)-related genes, such as KLF4, Oct4, Sox2, Nanog, CD133, CD44, CD166, ALDH1, Lgr5, E-cadherin, ZO-1, Vimentin, Snail, Slug, and Twist, was examined using real-time PCR. Results: Lgr5-positive subpopulations exhibited higher capacities for colony formation, self-renewal, differentiation, and tumorigenicity as well as higher expression of stemness genes and mesenchymal genes and lower expression of epithelial genes than did Lgr5-negative subpopulations. Conclusion: Our data revealed that tumorigenic cells were highly restricted to Lgr5-positive subpopulations. Most importantly, Lgr5+CD44+EpCAM+ cells exhibited more pronounced CSC-like traits than did any other subpopulation, indicating that Lgr5 combined with CD44 and EpCAM can further improve the stem-like traits of CSCs in colorectal cancer.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yapeng Ji ◽  
Chuanzhen Yang ◽  
Zefang Tang ◽  
Yongfeng Yang ◽  
Yonglu Tian ◽  
...  

Abstract Targeting the specific metabolic phenotypes of colorectal cancer stem cells (CRCSCs) is an innovative therapeutic strategy for colorectal cancer (CRC) patients with poor prognosis and relapse. However, the context-dependent metabolic traits of CRCSCs remain poorly elucidated. Here we report that adenylate kinase hCINAP is overexpressed in CRC tissues. Depletion of hCINAP inhibits invasion, self-renewal, tumorigenesis and chemoresistance of CRCSCs with a loss of mesenchymal signature. Mechanistically, hCINAP binds to the C-terminal domain of LDHA, the key regulator of glycolysis, and depends on its adenylate kinase activity to promote LDHA phosphorylation at tyrosine 10, resulting in the hyperactive Warburg effect and the lower cellular ROS level and conferring metabolic advantage to CRCSC invasion. Moreover, hCINAP expression is positively correlated with the level of Y10-phosphorylated LDHA in CRC patients. This study identifies hCINAP as a potent modulator of metabolic reprogramming in CRCSCs and a promising drug target for CRC invasion and metastasis.


2020 ◽  
Vol 493 ◽  
pp. 236-244
Author(s):  
Hui Zhao ◽  
Chang Yan ◽  
Yibing Hu ◽  
Lei Mu ◽  
Shuang Liu ◽  
...  

2020 ◽  
Author(s):  
Chen Zhang ◽  
Yuanyuan Zhao ◽  
Yongjing Yang ◽  
Chunlian Zhong ◽  
Tianju Ji ◽  
...  

Abstract Background: Colorectal cancer (CRC) is the third most common cancer in the world known for its poor recurrence-free prognosis. Previous studies have shown that it is closely linked with cancer stem cells (CSCs), which have self-renewal potential and the capacity to differentiate into diverse populations. Nanog is an important transcription factor that functions to maintain the self-renewal and proliferation of embryonic stem cells; however, many recent studies have shown that Nanog is also highly expressed in many cancer stem cells. Methods: To investigate whether Nanog plays a crucial role in maintaining the stemness of colorectal CSCs (CCSCs), RNA interference was used to downregulate Nanog expression in the CRC stem cell line, EpCAM + CD44 + HCT-116. We examined the anti-tumor function of Nanog in vitro and in vivo, using small interfering RNA. Results: Our results revealed that the Nanog mRNA expression level in CCSCs was higher than that in HCT-116 cells. We found that the depletion of Nanog inhibited proliferation and promoted apoptosis in EpCAM + CD44 + HCT-116 cells. In addition, the invasive ability of EpCAM + CD44 + HCT-116 cells was markedly restricted when Nanog was silenced by small interfering RNA. Furthermore, we found that the silencing of Nanog decreased tumor size and weight and improved the survival rate of tumor-bearing mice. Conclusions: In conclusion, these findings collectively demonstrate that Nanog, which is highly expressed in CRC stem cells, is a key factor in the development of tumor growth, and it may serve as a potential marker of prognosis and a novel and effective therapeutic target for the treatment of CRC.


Sign in / Sign up

Export Citation Format

Share Document