Possible cellular mechanism for striatal degeneration in Huntington disease

2014 ◽  
Vol 10 (4) ◽  
pp. 182-182
2020 ◽  
Vol 117 (33) ◽  
pp. 20265-20273 ◽  
Author(s):  
Qiong Liu ◽  
Siying Cheng ◽  
Huiming Yang ◽  
Louyin Zhu ◽  
Yongcheng Pan ◽  
...  

Huntington disease (HD) is an ideal model for investigating selective neurodegeneration, as expanded polyQ repeats in the ubiquitously expressed huntingtin (HTT) cause the preferential neurodegeneration in the striatum of the HD patient brains. Here we report that adeno-associated virus (AAV) transduction-mediated depletion of Hap1, the first identified huntingtin-associated protein, in adult HD knock-in (KI) mouse brains leads to selective neuronal loss in the striatum. Further, Hap1 depletion-mediated neuronal loss via AAV transduction requires the presence of mutant HTT. Rhes, a GTPase that is enriched in the striatum and sumoylates mutant HTT to mediate neurotoxicity, binds more N-terminal HTT when Hap1 is deficient. Consistently, more soluble and sumoylated N-terminal HTT is presented in HD KI mouse striatum when HAP1 is absent. Our findings suggest that both Rhes and Hap1 as well as cellular stress contribute to the preferential neurodegeneration in HD, highlighting the involvement of multiple factors in selective neurodegeneration.


Author(s):  
Roger L. Albin ◽  
Henry L. Paulson

A member of the expanded polyglutamine (polyQ) repeat family of neurodegenerative disorders, Huntington disease (HD) is a rare, autosomal, dominantly inherited neuropsychiatric disorder. Characterized by midlife onset, HD exhibits progressive motor, behavioral, and cognitive changes. There is no effective treatment and death usually ensues 15 to 20 years after diagnosis. The expanded polyglutamine repeat causes multiple cellular dysfunctions to induce neurodegeneration. Many brain regions are affected in HD though striatal degeneration is particularly prominent. Widespread availability of specific genetic testing facilitates diagnosis. Management is largely supportive care.


Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

: Neurodegenerative diseases including Alzheimer’s, Parkinson’s and Huntington disease are have serious concern due to its effect on the quality of life of affected persons. Neurodegenerative diseases have some limitations for both diagnostic as well as at treatment level. Introducing nanotechnology, for the treatment of these diseases may contribute significantly in solving the problem. There are several treatment strategies for the neurodegenerative diseases, but their limitations are the entry into the due to the presence of the blood-brain barrier (BBB). The present review highlights the application of nanotechnology during last 20 years for the treatment of neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document