Nanotechnology: its application in treating Neurodegenerative diseases

Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

: Neurodegenerative diseases including Alzheimer’s, Parkinson’s and Huntington disease are have serious concern due to its effect on the quality of life of affected persons. Neurodegenerative diseases have some limitations for both diagnostic as well as at treatment level. Introducing nanotechnology, for the treatment of these diseases may contribute significantly in solving the problem. There are several treatment strategies for the neurodegenerative diseases, but their limitations are the entry into the due to the presence of the blood-brain barrier (BBB). The present review highlights the application of nanotechnology during last 20 years for the treatment of neurodegenerative diseases.

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 179 ◽  
Author(s):  
Keith D. Harris ◽  
Meital Weiss ◽  
Amotz Zahavi

In the CNS, minor changes in the concentration of neurotransmitters such as glutamate or dopamine can lead to neurodegenerative diseases. We present an evolutionary perspective on the function of neurotransmitter toxicity in the CNS. We hypothesize that neurotransmitters are selected because of their toxicity, which serves as a test of neuron quality and facilitates the selection of neuronal pathways. This perspective may offer additional explanations for the reduction of neurotransmitter concentration in the CNS with age, and suggest an additional role for the blood-brain barrier. It may also suggest a connection between the specific toxicity of the neurotransmitters released in a specific region of the CNS, and elucidate their role as chemicals that are optimal for testing the quality of cells in that region.


2020 ◽  
Author(s):  
Pierre-Louis Hollier ◽  
Sarah Guimbal ◽  
Pierre Mora ◽  
Aïssata Diop ◽  
Lauriane Cornuault ◽  
...  

AbstractRecent work demonstrated that Central Nervous System (CNS) inflammation induces endothelial Blood Brain Barrier (BBB) opening as well as the formation of a tight junction barrier between reactive astrocytes at the Glia Limitans. We hypothesized that these two barriers may be reciprocally regulated by each other state and further, that the CNS parenchyma may acquire protection from the reactive astrocytic Glia Limitans not only in neuro-inflammation but also when BBB integrity is compromised under resting condition, without pathology. Previous studies identified Sonic hedgehog (Shh) astrocytic secretion as implicated in stabilizing the BBB during neuropathology and we recently demonstrated that desert hedgehog (Dhh) is expressed at the BBB in adults.Here we unraveled the role of the morphogen Dhh in maintaining BBB tightness and, using endothelial Dhh knockdown as a model of permeable BBB, we demonstrated that a double barrier system comprising both the BBB and Glia Limitans, is implemented in the CNS and regulated by a crosstalk going from endothelial cell to astrocytes.First, we showed that, under neuro-inflammatory conditions, Dhh expression is severely down regulated at the BBB and that Dhh is necessary for endothelial intercellular junction integrity as Dhh knockdown leads to CNS vascular leakage. We then demonstrated that, in Dhh endothelial knockout (DhhECKO) mice which display an open BBB, astrocytes are reactive and express the tight junction Claudin 4 (Cldn4) and showed that astrocytes can respond to signals secreted by the permeable endothelial BBB by becoming reactive and expressing Cldn4. To examine the consequences of the above results on disease severity, we finally induced multiple sclerosis in DhhECKO mice versus control littermates and showed that the pathology is less severe in the knockout animals due to Glia Limitans tightening, in response to BBB leakage, which drives inflammatory infiltrate entrapment into the perivascular space. Altogether these results suggest that genetic disruption of the BBB generates endothelial signals capable of driving the implementation of a secondary barrier at the Glia Limitans to protect the parenchyma. The concept of a reciprocally regulated CNS double barrier system has implications for treatment strategies in both the acute and chronic phases of multiple sclerosis pathophysiology.


Biochimie ◽  
2020 ◽  
Vol 170 ◽  
pp. 203-211 ◽  
Author(s):  
Mayssa Hachem ◽  
Mounir Belkouch ◽  
Amanda Lo Van ◽  
Madeleine Picq ◽  
Nathalie Bernoud-Hubac ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Courtney Lane-Donovan ◽  
Joachim Herz

A new three-dimensional model of the blood-brain barrier can be used to study processes that are involved in neurodegenerative diseases.


2016 ◽  
Vol 235 ◽  
pp. 34-47 ◽  
Author(s):  
Cláudia Saraiva ◽  
Catarina Praça ◽  
Raquel Ferreira ◽  
Tiago Santos ◽  
Lino Ferreira ◽  
...  

2018 ◽  
Author(s):  
Elisa E. Konofagou

After cancer and heart disease, neurodegenerative diseases, such as Alzheimer's, Parkinson's, multiple sclerosis (MS), amythrophic lateral sclerosis (ALS), and neurological diseases take more lives each year than any other illness. Although great progress has been made in recent years toward understanding of central nervous system (CNS) diseases, few effective treatments and no cures are currently available. This is mainly because the blood-brain barrier (BBB) limits the delivery of the vast majority of systemically-administered drugs available to treat those diseases. The underlying hypothesis of this study is that delivery of therapeutic molecules is safe and effective through the blood-brain barrier (BBB) using Focused Ultrasound (FUS) in large animals in vivo. Our preliminary results have shown that the FUS technique can induce BBB opening entirely noninvasively, selectively and be monitored with MRI at sub-millimeter resolution in vivo. The specific aims are therefore to: 1) build a MRcompatible system for FUS targeting and monitoring in the MRI system; 2) test and demonstrate delivery of neurotrophic factors to the hippocampus and putamen of monkeys; 3) test and demonstrate delivery of inhibitors to the visual cortex of monkeys; and 4) assess the safety of the FUS method in monkeys.


Author(s):  
Yijun Pan ◽  
Joseph Nicolazzo

The access of drugs into the central nervous system (CNS) is regulated by the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). A large body of evidence supports perturbation of these barriers in neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Modifications to the BBB and BSCB are also reported in amyotrophic lateral sclerosis (ALS), albeit these modifications have received less attention relative to those in other neurodegenerative diseases. Such alterations to the BBB and BSCB have the potential to impact on CNS exposure of drugs in ALS, modulating the effectiveness of drugs intended to reach the brain and the toxicity of drugs that are not intended to reach the brain. Given the clinical importance of these phenomena, this review will summarise reported modifications to the BBB and BSCB in ALS, discuss their impact on CNS drug exposure and suggest further research directions so as to optimise medicine use in people with ALS.


Sign in / Sign up

Export Citation Format

Share Document