Faculty Opinions recommendation of Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding.

Author(s):  
George Perry
2013 ◽  
Vol 110 (37) ◽  
pp. 14995-15000 ◽  
Author(s):  
G. Xiao ◽  
Q. Fan ◽  
X. Wang ◽  
B. Zhou

2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

: Neurodegenerative diseases including Alzheimer’s, Parkinson’s and Huntington disease are have serious concern due to its effect on the quality of life of affected persons. Neurodegenerative diseases have some limitations for both diagnostic as well as at treatment level. Introducing nanotechnology, for the treatment of these diseases may contribute significantly in solving the problem. There are several treatment strategies for the neurodegenerative diseases, but their limitations are the entry into the due to the presence of the blood-brain barrier (BBB). The present review highlights the application of nanotechnology during last 20 years for the treatment of neurodegenerative diseases.


1992 ◽  
Vol 158 (1) ◽  
pp. 215-216 ◽  
Author(s):  
A Denys ◽  
A Leroy-Willig ◽  
D Riche ◽  
P Hantraye

Sign in / Sign up

Export Citation Format

Share Document