scholarly journals CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth

Oncogene ◽  
2014 ◽  
Vol 34 (28) ◽  
pp. 3651-3661 ◽  
Author(s):  
H Mathsyaraja ◽  
K Thies ◽  
D A Taffany ◽  
C Deighan ◽  
T Liu ◽  
...  
Author(s):  
Lorela Ciraku ◽  
Rebecca A. Moeller ◽  
Emily M. Esquea ◽  
Wiktoria A. Gocal ◽  
Edward J. Hartsough ◽  
...  

BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (22) ◽  
Author(s):  
Baotong Zhang ◽  
Xin Li ◽  
Wei Qian ◽  
Daqing Wu ◽  
Jin Dong

2000 ◽  
Vol 18 (5) ◽  
pp. 1135-1135 ◽  
Author(s):  
Amy R. Nelson ◽  
Barbara Fingleton ◽  
Mace L. Rothenberg ◽  
Lynn M. Matrisian

ABSTRACT: Tumor progression is a complex, multistage process by which a normal cell undergoes genetic changes that result in phenotypic alterations and the acquisition of the ability to spread and colonize distant sites in the body. Although many factors regulate malignant tumor growth and spread, interactions between a tumor and its surrounding microenvironment result in the production of important protein products that are crucial to each step of tumor progression. The matrix metalloproteinases (MMPs) are a family of degradative enzymes with clear links to malignancy. These enzymes are associated with tumor cell invasion of the basement membrane and stroma, blood vessel penetration, and metastasis. They have more recently been implicated in primary and metastatic tumor growth and angiogenesis, and they may even have a role in tumor promotion. This review outlines our current understanding of the MMP family, including the association of particular MMPs with malignant phenotypes and the role of MMPs in specific steps of the metastatic cascade. As scientific understanding of the MMPs has advanced, therapeutic strategies that capitalize on blocking the enzymes have rapidly developed. The preclinical and clinical evolution of the synthetic MMP inhibitors (MMPIs) is also examined, with the discussion encompassing important methodologic issues associated with determining clinical efficacy of MMPIs and other novel therapeutic agents.


Endocrinology ◽  
2021 ◽  
Author(s):  
Amy E Baek ◽  
Natalia Krawczynska ◽  
Anasuya Das Gupta ◽  
Svyatoslav Victorovich Dvoretskiy ◽  
Sixian You ◽  
...  

Abstract Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite, 27-hydroxycholesterol (27HC), as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and a liver x receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells, with neutrophils (PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that include exosomes. The resulting EVs had a size distribution that was skewed slightly larger, compared to EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across three different subtypes: primary murine PMNs, RAW264.7 monocytic cells and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in two different syngeneic models, demonstrating the potential role of 27HC induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their pro-tumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


2019 ◽  
Author(s):  
Haley Lei Huang ◽  
Ramireddy Bommireddy ◽  
Luis E. Munoz ◽  
Ashwathi P. Menon ◽  
Suresh Ramalingam ◽  
...  

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A30.1-A30
Author(s):  
F Gsottberger ◽  
C Brandl ◽  
S Petkovic ◽  
L Nitschke ◽  
A Mackensen ◽  
...  

BackgroundThe tumor microenvironment (TME) is composed of various cell types which closely interact via cell cell contacts and cytokines leading to tumor promotion, immune cell inhibition and drug resistance. TME is increasingly recognized for its role in cancer immunotherapies. In B-cell malignancies, myeloid cells play a central role in supporting tumor growth and immune suppression (Roussel et al., 2017, Cancer Immunol Immunother). Despite the importance of a syngeneic TME, preclinical studies with novel drugs have mainly been performed in models lacking a functional immune system. Therefore, we developed an immune competent murine lymphoma model transgenic to human CD22 to study effects of targeted therapies on TME.Materials and MethodsA chimeric CD22 consisting of human extracellular and murine intracellular CD22 (h/mCD22) was introduced in BL6 mice (BL6h/mCD22). Crossbreeding with BL6λ-myc lead to spontaneous development of murine lymphoma that were serially transplanted. Tumor infiltration and TME was characterized by flow cytometry. Mice were treated with Moxetumomab pasudotox, a CD22 targeted immunotoxin and Doxorubicin.ResultsSpontaneously developed tumors in lymphoid organs from BL6h/mCD22 x λ-myc consist of a monomorphic population of h/mCD22+ murine B cells. Three primary lymphoma subclones were isolated from distinct mice and serially transplanted in syngeneic mice. Stable tumor growth was established after subcutaneous (sc) and intravenous (iv) injection. However, TME of sc tumors was infiltrated by less than 1% immune cells, while myc-driven lymphoma in humans usually show substantial immune infiltration. In contrast to sc tumors, systemically growing lymphoma in murine bone marrow (BM) are infiltrated by 30% myeloid cells and 1% T-cells and in murine spleen by 10% and 30%, respectively. Myeloid cells found in these tumors were shown to suppress T cell proliferation in vitro. To test functionality of the h/mCD22 transgene, lymphoma-bearing mice were treated with Moxetumomab, which reduced BM lymphoma infiltration by 20 to 100-fold and infiltration in spleen by 5 to 20-fold in the three lymphoma models. Effects of treatment on TME were analyzed after treatment with Doxorubicin which is known to activate myeloid cells in vivo. Compared to untreated controls, Doxorubicin increased CD11b+ cells in spleen by 1.5-fold. Among these cells, Ly6G+ granulocytic cells increased most substantially.ConclusionsWe established primary, myc-driven h/mCD22+ B-cell lymphoma which stably engraft in syngeneic mice with a TME mimicking myc-driven lymphoma in men. The model responds well to CD22-targeted therapy and Doxorubicin induces expected immunologic changes. Therefore, our unique model provides a platform to test CD22-targeting treatment strategies in an immune competent background.Disclosure InformationF. Gsottberger: None. C. Brandl: None. S. Petkovic: None. L. Nitschke: None. A. Mackensen: None. F. Müller: None.


2020 ◽  
Vol 10 ◽  
Author(s):  
Tobias Kratzsch ◽  
Andras Piffko ◽  
Thomas Broggini ◽  
Marcus Czabanka ◽  
Peter Vajkoczy

Sign in / Sign up

Export Citation Format

Share Document