scholarly journals Health-based evaluation of ambient air measurements of PM2.5 and volatile organic compounds near a Marcellus Shale unconventional natural gas well pad site and a school campus

Author(s):  
Christopher M. Long ◽  
Nicole L. Briggs ◽  
Brian A. Cochran ◽  
Destiny M. Mims

Abstract Background Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads. Objective Conducted in an area of Washington County, Pennsylvania, with extensive Marcellus Shale development, this study investigated whether operations at an unconventional natural gas well pad may contribute to ambient air concentrations of potential health concern at a nearby school campus. Methods Almost 2 years of air monitoring for fine particulate matter (PM2.5) and volatile organic compounds (VOCs) was performed at three locations between 1000 and 2800 feet from the study well pad from December 2016 to October 2018. PM2.5 was measured continuously at one of the three sites using a beta attenuation monitor, while 24-h stainless steel canister samples were collected every 6 days at all sites for analysis of 58 VOCs. Results Mean PM2.5 concentrations measured during the different well activity periods ranged from 5.4 to 9.5 μg/m3, with similar levels and temporal changes as PM2.5 concentrations measured at a regional background location. The majority of VOCs were either detected infrequently or not at all, with measurements for a limited number of VOCs indicating the well pad to be a source of small and transient contributions. Significance All measurement data of PM2.5 and 58 VOCs, which reflect the cumulative contributions of emissions from the study well pad and other local/regional air pollutant sources (e.g., other well pads), were below health-based air comparison values, and thus do not provide evidence of either 24-hour or long-term air quality impacts of potential health concern at the school.

2019 ◽  
Vol 19 (4) ◽  
pp. 2209-2232 ◽  
Author(s):  
Guo Li ◽  
Yafang Cheng ◽  
Uwe Kuhn ◽  
Rongjuan Xu ◽  
Yudong Yang ◽  
...  

Abstract. Volatile organic compounds (VOCs) play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs under ambient air conditions of an urban background site in Beijing. Sterilized soil was investigated to address physicochemical processes and heterogeneous/multiphase reactions independently from biological activity. Most VOCs revealed net deposition with average uptake coefficients (γ) in the range of 10−7–10−6 (referring to the geometric soil surface area), corresponding to deposition velocities (Vd) of 0.0013–0.01 cm s−1 and soil surface resistances (Rc) of 98–745 s cm−1, respectively. Formic acid, however, was emitted at a long-term average rate of ∼6×10-3 nmol m−2 s−1, suggesting that it was formed and released upon heterogeneous oxidation of other VOCs. The soil–atmosphere exchange of one individual VOC species can be affected by both its surface degradation/depletion caused by surface reactions and by competitive uptake or heterogeneous formation/accommodation of other VOC species. Overall, the results show that physicochemical processing and heterogeneous oxidation on soil and soil-derived dust can act as a sink or as a source of atmospheric VOCs, depending on molecular properties and environmental conditions.


2014 ◽  
Vol 14 (20) ◽  
pp. 10977-10988 ◽  
Author(s):  
C. Warneke ◽  
F. Geiger ◽  
P. M. Edwards ◽  
W. Dube ◽  
G. Pétron ◽  
...  

Abstract. Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.


2018 ◽  
Author(s):  
Guo Li ◽  
Yafang Cheng ◽  
Uwe Kuhn ◽  
Rongjuan Xu ◽  
Yudong Yang ◽  
...  

Abstract. Volatile organic compounds (VOCs) play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air-soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing. Sterilized soil was investigated to address physicochemical processes and heterogeneous/multiphase reactions independently from biological activity. Most VOCs revealed net deposition with average uptake coefficients (γ) in the range of 10-7–10-6 (referring to the geometric soil surface area), corresponding to deposition velocities (Vd) of 0.0013–0.01 cm s-1 and soil surface resistances (Rc) of 98–745 s cm-1, respectively. Formic acid, however, was emitted at a long-term average rate of ~ 6 × 10-3 nmol m-2 s-1, suggesting that it was formed and released upon heterogeneous oxidation of other VOCs. The soil-atmosphere exchange of one individual VOC species can be affected by both its surface degradation/depletion caused by surface reactions and by competitive uptake or heterogeneous formation/accommodation of other VOC species. Overall, the results show that physicochemical processing and heterogeneous oxidation on soil and soil-derived dust can act as a sink or as a source of atmospheric VOCs, depending on molecular properties and environmental conditions.


2020 ◽  
Author(s):  
Nur H. Orak ◽  
Matthew Reeder ◽  
Natalie J. Pekney

Abstract. The United States experienced a sharp increase in unconventional natural gas (UNG) development due to the technological development of hydraulic fracturing ("fracking"). The objective of this study is to investigate the effect of unconventional natural gas development activities on local air quality as observed at an active Marcellus Shale well pad at the Marcellus Shale Energy and Environment Laboratory (MSEEL) in Morgantown, Western Virginia, USA. Using an ambient air monitoring laboratory, continuous sampling started in September 2015 during horizontal drilling and ended in February 2016 when wells were in production. High resolution data were collected for the following air quality contaminants: volatile organic compounds (VOCs), ozone (O3), methane (CH4), nitrogen oxides (NO and NO2), carbon dioxide, (CO2), as well as typical meteorological parameters (wind speed/direction, temperature, relative humidity, and barometric pressure). Positive Matrix Factorization (PMF), a multivariate factor analysis tool, was used to identify possible sources of these pollutants (factor profiles) and determine the contribution of those sources to the air quality at the site. The results of the PMF analysis for well pad development phases indicate that there are three potential factor profiles impacting air quality at the site: natural gas, regional transport/photochemistry, and engine emissions. There is a significant contribution of pollutants during horizontal drilling stage to natural gas factor. The model outcomes show that there is an increasing contribution to engine emission factor over different well pad drilling through production phases. Moreover, model results suggest that the major contributions to the regional transport/photochemistry factor occurred during horizontal drilling and drillout stages.


Sign in / Sign up

Export Citation Format

Share Document