scholarly journals Identifying and Quantifying Source Contributions of Air Quality Contaminants during Unconventional Shale Gas Extraction

2020 ◽  
Author(s):  
Nur H. Orak ◽  
Matthew Reeder ◽  
Natalie J. Pekney

Abstract. The United States experienced a sharp increase in unconventional natural gas (UNG) development due to the technological development of hydraulic fracturing ("fracking"). The objective of this study is to investigate the effect of unconventional natural gas development activities on local air quality as observed at an active Marcellus Shale well pad at the Marcellus Shale Energy and Environment Laboratory (MSEEL) in Morgantown, Western Virginia, USA. Using an ambient air monitoring laboratory, continuous sampling started in September 2015 during horizontal drilling and ended in February 2016 when wells were in production. High resolution data were collected for the following air quality contaminants: volatile organic compounds (VOCs), ozone (O3), methane (CH4), nitrogen oxides (NO and NO2), carbon dioxide, (CO2), as well as typical meteorological parameters (wind speed/direction, temperature, relative humidity, and barometric pressure). Positive Matrix Factorization (PMF), a multivariate factor analysis tool, was used to identify possible sources of these pollutants (factor profiles) and determine the contribution of those sources to the air quality at the site. The results of the PMF analysis for well pad development phases indicate that there are three potential factor profiles impacting air quality at the site: natural gas, regional transport/photochemistry, and engine emissions. There is a significant contribution of pollutants during horizontal drilling stage to natural gas factor. The model outcomes show that there is an increasing contribution to engine emission factor over different well pad drilling through production phases. Moreover, model results suggest that the major contributions to the regional transport/photochemistry factor occurred during horizontal drilling and drillout stages.

2021 ◽  
Vol 21 (6) ◽  
pp. 4729-4739
Author(s):  
Nur H. Orak ◽  
Matthew Reeder ◽  
Natalie J. Pekney

Abstract. The United States has experienced a sharp increase in unconventional natural gas (UNG) development due to the technological development of hydraulic fracturing. The objective of this study is to investigate the emissions at an active Marcellus Shale well pad at the Marcellus Shale Energy and Environment Laboratory (MSEEL) in Morgantown, West Virginia, USA. Using an ambient air monitoring laboratory, continuous sampling started in September 2015 during horizontal drilling and ended in February 2016 when wells were in production. High-resolution data were collected for the following air quality contaminants: volatile organic compounds (VOCs), ozone (O3), methane (CH4), nitrogen oxides (NO and NO2), and carbon dioxide (CO2), as well as typical meteorological parameters (wind speed and direction, temperature, relative humidity, and barometric pressure). Positive matrix factorization (PMF), a multivariate factor analysis tool, was used to identify possible sources of these pollutants (factor profiles) and determine the contribution of those sources to the air quality at the site. The results of the PMF analysis for well pad development phases indicate that there are three potential factor profiles impacting air quality at the site: natural gas, regional transport/photochemistry, and engine emissions. There is a significant contribution of pollutants during the horizontal drilling stage to the natural gas factor. The model outcomes show that there is an increasing contribution to the engine emission factor over different well pad drilling periods through production phases. Moreover, model results suggest that the regional transport/photochemistry factor is more pronounced during horizontal drilling and drillout due to limited emissions at the site.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Detlev Helmig

The rise of hydraulic fracturing techniques has fostered rapid growth of oil and natural gas (O&NG) extraction in areas across the United States. In the Denver-Julesburg Basin (DJB), which mostly overlaps with Weld County in the Northern Colorado Front Range (NCFR) north of the City of Denver Metropolitan Area (DMA), the well drilling has increasingly approached, and in many instances moved into urban residential areas. During the same time, the region has also experienced steady population growth. The DMA – NCFR has been in exceedance of the ozone U.S. National Ambient Air Quality Standard (NAAQS) and was designated a non-attainment area of the standard in 2007. Despite State efforts to curb precursors, ozone has consistently remained above the standard. A growing number of atmospheric studies has provided an ever increasing body of literature for assessing influences from O&NG industry emissions on air quality in the DMA-NCFR. This paper provides 1. An overview of available literature on O&NG influences on the regional air quality, 2. A summary of the pertinent findings presented in these works, 3. An assessment of the most important pollutants and air quality impacts, 4. Identification of knowledge and monitoring gaps, and 5. Recommendations for future research and policy.


Author(s):  
Christopher M. Long ◽  
Nicole L. Briggs ◽  
Brian A. Cochran ◽  
Destiny M. Mims

Abstract Background Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads. Objective Conducted in an area of Washington County, Pennsylvania, with extensive Marcellus Shale development, this study investigated whether operations at an unconventional natural gas well pad may contribute to ambient air concentrations of potential health concern at a nearby school campus. Methods Almost 2 years of air monitoring for fine particulate matter (PM2.5) and volatile organic compounds (VOCs) was performed at three locations between 1000 and 2800 feet from the study well pad from December 2016 to October 2018. PM2.5 was measured continuously at one of the three sites using a beta attenuation monitor, while 24-h stainless steel canister samples were collected every 6 days at all sites for analysis of 58 VOCs. Results Mean PM2.5 concentrations measured during the different well activity periods ranged from 5.4 to 9.5 μg/m3, with similar levels and temporal changes as PM2.5 concentrations measured at a regional background location. The majority of VOCs were either detected infrequently or not at all, with measurements for a limited number of VOCs indicating the well pad to be a source of small and transient contributions. Significance All measurement data of PM2.5 and 58 VOCs, which reflect the cumulative contributions of emissions from the study well pad and other local/regional air pollutant sources (e.g., other well pads), were below health-based air comparison values, and thus do not provide evidence of either 24-hour or long-term air quality impacts of potential health concern at the school.


Author(s):  
Jared D. Harris ◽  
Samuel E. Bodily ◽  
Jenny Mead ◽  
Donald Adolphson ◽  
Brad Carmack ◽  
...  

Jane Barrow, CEO of Caprica Energy, must recommend to the board which of three potential “unconventional ” natural-gas development sites in different parts of the United States the company should pursue. The case takes place in January 2011, when the “low-hanging fruit ” of natural-gas production in the United States had essentially been picked. All three of the potential sites (shale, coalbed methane, and tight sands) would require hydraulic fracturing, a process of removing gas that was formerly considered inaccessible by injecting water and chemicals into the ground. Because of emerging concerns about the potential harm “fracking ” can do to drinking water, Barrow must not only analyze which site might be most profitable but also what the potential risks to the environment and area residents might be.


Author(s):  
Nathaniel R. Fold ◽  
Mary R. Allison ◽  
Berkley C. Wood ◽  
Pham T. B. Thao ◽  
Sebastien Bonnet ◽  
...  

Multiple studies indicate that PM2.5 is the most deleterious air pollutant for which there are ambient air quality standards. Daily concentrations of PM2.5 in Bangkok, Thailand, continuously exceed the World Health Organization (WHO) and the Thai National Ambient Air Quality Standards (NAAQSs). Bangkok has only recently begun to measure concentrations of PM2.5. To overcome this paucity of data, daily PM2.5/PM10 ratios were generated over the period 2012–2018 to interpolate missing values. Concentration-response coefficients (β values) for PM2.5 versus non-accidental, cardiopulmonary, and lung cancer mortalities were derived from the literature. Values were also estimated and were found to be comparable to those reported in the literature for a Chinese population, but considerably lower than those reported in the literature from the United States. These findings strongly suggest that specific regional β values should be used to accurately quantify the number of premature deaths attributable to PM2.5 in Asian populations. Health burden analysis using the Environmental Benefits Mapping and Analysis Program (BenMAP) showed that PM2.5 concentration in Bangkok contributes to 4240 non-accidental, 1317 cardiopulmonary, and 370 lung cancer mortalities annually. Further analysis showed that the attainment of PM2.5 levels to the NAAQSs and WHO guideline would reduce annual premature mortality in Bangkok by 33%and 75%, respectively.


2019 ◽  
Vol 109 ◽  
pp. 277-282 ◽  
Author(s):  
Corbett Grainger ◽  
Andrew Schreiber

In the United States, ambient air quality is regulated through National Ambient Air Quality standards (NAAQS). Enforcement of these standards is delegated to state and sub-state regulators who are also tasked with designing their own monitoring networks for ambient pollution. Past work has found evidence consistent with strategic behavior: local regulators strategically avoid pollution hotspots when siting monitors. This paper assesses whether income and race have historically played a role in monitor siting decisions.


Sign in / Sign up

Export Citation Format

Share Document