scholarly journals Therapeutic potential of PLK1 inhibition in triple-negative breast cancer

2019 ◽  
Vol 99 (9) ◽  
pp. 1275-1286 ◽  
Author(s):  
Ai Ueda ◽  
Keiki Oikawa ◽  
Koji Fujita ◽  
Akio Ishikawa ◽  
Eiichi Sato ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1212
Author(s):  
Getinet M. Adinew ◽  
Equar Taka ◽  
Patricia Mendonca ◽  
Samia S. Messeha ◽  
Karam F. A. Soliman

Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs’ levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.


Oncotarget ◽  
2014 ◽  
Vol 5 (22) ◽  
pp. 11308-11318 ◽  
Author(s):  
María Jesús Ortiz-Ruiz ◽  
Stela Álvarez-Fernández ◽  
Tracy Parrott ◽  
Sara Zaknoen ◽  
Francis J. Burrows ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 139 ◽  
Author(s):  
Billy Hill ◽  
Annachiara Sarnella ◽  
Domenica Capasso ◽  
Daniela Comegna ◽  
Annarita Del Gatto ◽  
...  

The mesenchymal sub-type of triple negative breast cancer (MES-TNBC) has a highly aggressive behavior and worse prognosis, due to its invasive and stem-like features, that correlate with metastatic dissemination and resistance to therapies. Furthermore, MES-TNBC is characterized by the expression of molecular markers related to the epithelial-to-mesenchymal transition (EMT) program and cancer stem cells (CSCs). The altered expression of αvβ3 integrin has been well established as a driver of cancer progression, stemness, and metastasis. Here, we showed that the high levels of αvβ3 are associated with MES-TNBC and therefore exploited the possibility to target this integrin to reduce the aggressiveness of this carcinoma. To this aim, MES-TNBC cells were treated with a novel peptide, named ψRGDechi, that we recently developed and characterized for its ability to selectively bind and inhibit αvβ3 integrin. Notably, ψRGDechi was able to hamper adhesion, migration, and invasion of MES-TNBC cells, as well as the capability of these cells to form vascular-like structures and mammospheres. In addition, this peptide reversed EMT program inhibits mesenchymal markers. These findings show that targeting αvβ3 integrin by ψRGDechi, it is possible to inhibit some of the malignant properties of MES-TNBC phenotype.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2677
Author(s):  
Parama Dey ◽  
Alexander Wang ◽  
Yvonne Ziegler ◽  
Sung Hoon Kim ◽  
Dorraya El-Ashry ◽  
...  

Metastasis-related complications account for the overwhelming majority of breast cancer mortalities. Triple negative breast cancer (TNBC), the most aggressive breast cancer subtype, has a high propensity to metastasize to distant organs, leading to poor patient survival. The forkhead transcription factor, FOXM1, is especially upregulated and overexpressed in TNBC and is known to regulate multiple signaling pathways that control many key cancer properties, including proliferation, invasiveness, stem cell renewal, and therapy resistance, making FOXM1 a critical therapeutic target for TNBC. In this study, we test the effectiveness of a novel class of 1,1-diarylethylene FOXM1 inhibitory compounds in suppressing TNBC cell migration, invasion, and metastasis using in vitro cell culture and in vivo tumor models. We show that these compounds inhibit the motility and invasiveness of TNBC MDA-MB-231 and DT28 cells, along with reducing the expression of important epithelial to mesenchymal transition (EMT) associated genes. Further, orthotopic tumor studies in NOD-SCID-gamma (NSG) mice demonstrate that these compounds reduce FOXM1 expression and suppress TNBC tumor growth as well as distant metastasis. Gene expression and protein analyses confirm the decreased levels of EMT factors and FOXM1-regulated target genes in tumors and metastatic lesions in the inhibitor-treated animals. The findings suggest that these FOXM1 suppressive compounds may have therapeutic potential in treating triple negative breast cancer, with the aim of reducing tumor progression and metastatic outgrowth.


2020 ◽  
Author(s):  
Rachel Martini ◽  
Yalei Chen ◽  
Brittany Jenkins ◽  
Isra Elhussin ◽  
Esther Cheng ◽  
...  

Abstract Large-scale efforts to identify breast cancer risk alleles have historically taken place among women on European ancestry, with recent efforts to validate these alleles or identify risk alleles applicable to women of African descent. We investigated the effect of previously reported breast cancer and triple-negative breast cancer (TNBC) risk alleles in our African enriched International Center for the Study of Breast Cancer Subtypes (ICSBCS) cohort. Using case-control and nested case-series approaches, we report that the Duffy-null allele (rs2814778) is associated with TNBC risk (OR = 3.814, p = 0.001), specifically among AA individuals, after adjusting for self-indicated race and west African ancestry (OR = 3.368, p = 0.007). We have also validated the protective effect of the minor allele of the ANKLE1 missense variant rs2363956 among AA for TNBC (OR = 0.4204, p = 0.005). We have shown that differential prevalence of the protective allele may reflect a polymorphic function of ANKLE1 in TNBC breast cancer outcomes. These AA specific risk alleles present opportunities for future studies of therapeutic potential that address race-specific differences in BC and TNBC risk and disease outcome.


2015 ◽  
Vol 9 (8) ◽  
pp. 1528-1538 ◽  
Author(s):  
Tesa M. Severson ◽  
Justine Peeters ◽  
Ian Majewski ◽  
Magali Michaut ◽  
Astrid Bosma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document