scholarly journals Nodular fasciitis: a comprehensive, time-correlated investigation of 17 cases

2021 ◽  
Author(s):  
Zoltán Sápi ◽  
Zoltán Lippai ◽  
Gergő Papp ◽  
Lajos Hegyi ◽  
Johanna Sápi ◽  
...  

AbstractThe self-limited nature of nodular fasciitis (NF) is well-known but its precise mechanism has not yet been clarified. We observed that “young” NF (preoperative duration <1 month) consistently contains a higher percentage (~80%) of USP6 break-apart FISH signals than “old” NF (preoperative duration >3 months) (~20%). Thus, we hypothesized that our original observation may reflect a connection with the self-limited nature of NF. Seventeen cases with reliable data concerning the onset were selected, thus approximating the lifetime of each tumor. Besides the USP6 interphase FISH examination, we also checked the most common MYH9-USP6 fusion using RT-PCR. Because of the known pathways of the tumorigenesis of NF, the mRNA level of USP6, TRAIL, IFN-beta, JAK1, STAT1, STAT3, JUN, and CDKN2A was measured using qRT-PCR. Regarding proteins, USP6, p16, p27, TRAIL, and IFN-beta were examined using immunohistochemistry. Targeted gene panel next-generation sequencing (NGS) of three cases was additionally performed. We found a strong negative correlation (p = 0.000) between the lifetime and percentage of USP6 break-apart signals and a strong positive relationship (p = 0.000) between USP6 break-apart signals and mitotic counts. Results of immunostainings, along with qRT-PCR results, favored the previously-suggested USP6-induced negative feedback mechanism through activation of TRAIL and IFN-beta, likely resulting in apoptosis and senescence of tumor cells harboring USP6 fusions. Targeted-NGS resulted in the detection of several variants, but no additional recurrent changes in the pathogenesis of these tumors. We revealed on a cellular level the USP6-induced negative feedback mechanism. In conclusion, we emphasize that in “old” NF, the percentage of USP6 break-apart FISH signals can be as low as 14–27% which can be very important from a differential diagnostic point of view. We emphasize that a careful examination and interpretation of the NGS data is needed before clinical decision-making on treatment.

2008 ◽  
Vol 457 (6) ◽  
pp. 1351-1360 ◽  
Author(s):  
M. Düfer ◽  
D. Haspel ◽  
P. Krippeit-Drews ◽  
L. Aguilar-Bryan ◽  
J. Bryan ◽  
...  

2013 ◽  
Vol 10 (81) ◽  
pp. 20121009 ◽  
Author(s):  
Tomer J. Czaczkes ◽  
Christoph Grüter ◽  
Francis L. W. Ratnieks

Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Damian G Romero ◽  
Maria W Plonczynski ◽  
Licy L Yanes ◽  
Tanganika R Washington ◽  
Gina Covington ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (19) ◽  
pp. 3843-3854 ◽  
Author(s):  
Antonella Teramo ◽  
Cristina Gattazzo ◽  
Francesca Passeri ◽  
Albana Lico ◽  
Giulia Tasca ◽  
...  

Key PointsIn T-LGLL, autologous LGL-depleted PBMCs release high levels of IL-6 contributing to the constitutive STAT3 activation in leukemic LGL. Leukemic LGLs show SOCS3 down-modulation, which is responsible for lack of the negative feedback mechanism controlling STAT3 activation.


1979 ◽  
Vol 55 (6) ◽  
pp. 776-786
Author(s):  
Masatomo MORI ◽  
Kihachi OHSHIMA ◽  
Sakae MARUTA ◽  
Hitoshi FUKUDA ◽  
Yohnosuke SHIMOMURA ◽  
...  

2003 ◽  
Vol 172 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Shi-Chuen Miaw ◽  
Bok Yun Kang ◽  
Ian Alexander White ◽  
I-Cheng Ho

2020 ◽  
Author(s):  
Xiaomin Fang ◽  
Albert Galy ◽  
Yibo Yang ◽  
Weilin Zhang ◽  
Chengcheng Ye ◽  
...  

&lt;p&gt;The CO&lt;sub&gt;2&lt;/sub&gt; degassing by plate tectonic process has long been thought to be balanced by weathering of silicate rocks on continents, keeping the Earth a relative stable global carbon cycle and temperature suitable for life creation, survival and evolution. The uplift of the Tibetan Plateau (TP) is hypothesized to enhance erosion and silicate weathering and organic carbon burial, thus cool the global temperature. However, the imbalance resulting from accelerated CO&lt;sub&gt;2&lt;/sub&gt; consumption by uplift of the TP and a relatively stable CO&lt;sub&gt;2&lt;/sub&gt; input from volcanic degassing during the Cenozoic should have depleted atmospheric CO&lt;sub&gt;2&lt;/sub&gt; within a few million years; therefore, a negative feedback mechanism must have stabilised the carbon cycle. Here, we present the first almost complete Paleogene silicate weathering intensity (SWI) records from continental rocks in the northern TP, based on detailed volcanic ash and paleomagnetic dating of two continuous Cenozoic sections in the Xining and Qaidam Basin in NW China. They show that the Paleogene silicate weathering in this tectonically inactive area was modulated by global temperature. These findings suggest that Paleogene global cooling was also strongly influenced by the temperature feedback mechanism that regulated silicate weathering rates and hydrological cycles and maintained a nearly stable carbon cycle. It acted as a negative feedback through decreasing CO&lt;sub&gt;2&lt;/sub&gt; consumption resulting from the lower SWI and the kinetic limitations in tectonically inactive areas that followed the global cooling. This means that the enhanced erosion and silicate weathering by the uplift of the south and central Tibetan Plateau, thus accelerated CO&lt;sub&gt;2&lt;/sub&gt; consumption, must be compensated by reducing CO&lt;sub&gt;2&lt;/sub&gt; consumption of the rest vast continents through their reduced silicate weathering from cooling.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document