Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer

Oncogene ◽  
2021 ◽  
Author(s):  
Shuang Qiao ◽  
Wenhua Lu ◽  
Christophe Glorieux ◽  
Jiangjiang Li ◽  
Peiting Zeng ◽  
...  
2021 ◽  
Author(s):  
Xia Jiang ◽  
Jia Wang ◽  
Mengyu Wang ◽  
Mingda Xuan ◽  
Shuangshuang Han ◽  
...  

QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rowaida Mohammed Reda M. M Aboushahba ◽  
Fayda Ibrahim Abdel Motaleb ◽  
Ahmed Abdel Aziz Abou-Zeid ◽  
Enas Samir Nabil ◽  
Dalia Abdel-Wahab Mohamed ◽  
...  

ABSTRACT Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths world-wide. There is an increasing need for the identification of novel biomarkers/targets for early diagnosis and for the development of novel chemopreventive and therapeutic agents for CRC. Recently, MACF1 gene has emerged as a potential therapeutic target in cancer as it involved in processes critical for tumor cell proliferation, invasion and metastasis. It is suggested that MACF1 may function in cancers through Wnt signaling. MiR-34a is a well-known tumor suppressor miRNA.miR-34a targets MACF1 gene as a part of the wnt signaling pathway. In this study, 40 colonic tissues were collected from CRC patients (20) and control subjects (20). miR-34a-5p was assessed by real time PCR in all study groups. The results showed highly significant decrease (P < 0.01) in miR-34a relative expression in the CRC group (median RQ 0.13) when compared to the benign group (median RQ 5.3) and the healthy control group (median RQ 19.63). miR-34a mimic and inhibitor were transfected in CaCo-2 cell line and proliferation was assessed. The transfection of the cell line with miR-34a mimic decreased cell proliferation. Our study suggests that miR-34a-5p targets MACF1 gene as a part of the wnt signaling pathway leading to the involvement in the molecular mechanisms of CRC development and progression.


2018 ◽  
Vol 19 (5) ◽  
pp. 463-474 ◽  
Author(s):  
Afsane Bahrami ◽  
Seyed Mahdi Hassanian ◽  
Majid Khazaei ◽  
Masoumeh Gharib ◽  
Mahsa Rahmani ◽  
...  

2018 ◽  
Vol Volume 11 ◽  
pp. 5359-5370 ◽  
Author(s):  
Nan Yi ◽  
Mingbing Xiao ◽  
Feng Jiang ◽  
Zhaoxiu Liu ◽  
Wenkai Ni ◽  
...  

2010 ◽  
Vol 69 (11) ◽  
pp. 2051-2054 ◽  
Author(s):  
William R Ferrell ◽  
Elizabeth B Kelso ◽  
John C Lockhart ◽  
Robin Plevin ◽  
Iain B McInnes

ObjectiveOsteoarthritis is a global clinical challenge for which no effective disease-modifying agents currently exist. This study identified protease-activated receptor 2 (PAR-2) as a novel pathogenic mechanism and potential therapeutic target in osteoarthritis.MethodsExperimental osteoarthritis was induced in wild-type and PAR-2-deficient mice by sectioning the medial meniscotibial ligament (MMTL), leading to the development of a mild arthropathy. Cartilage degradation and increased subchondral bone formation were assessed as indicators of osteoarthritis pathology.ResultsFour weeks following MMTL section, cartilage erosion and increased subchondral bone formation was evident in wild-type mice but was substantially reduced in PAR-2-deficient mice. Crucially, the therapeutic inhibition of PAR-2 in wild-type mice, using either a PAR-2 antagonist or a monoclonal antibody targeting the protease cleavage site of PAR-2, was also equally effective at reducing osteoarthritis progression in vivo. PAR-2 was upregulated in chondrocytes of wild-type but not sham-operated mice. Wild-type mice showed further joint degradation 8 weeks after the induction of osteoarthritis, but PAR-2-deficient mice were still protected.ConclusionsThe substantial protection from pathology afforded by PAR-2 deficiency following the induction of osteoarthritis provides proof of concept that PAR-2 plays a key role in osteoarthritis and suggests this receptor as a potential therapeutic target.


2017 ◽  
Vol 23 (14) ◽  
pp. 3918-3928 ◽  
Author(s):  
Wenhao Weng ◽  
Qing Wei ◽  
Shusuke Toden ◽  
Kazuhiro Yoshida ◽  
Takeshi Nagasaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document