Newborn screen metabolic panels reflect the impact of common disorders of pregnancy

Author(s):  
Jonathan D. Reiss ◽  
Alan L. Chang ◽  
Jonathan A. Mayo ◽  
Katherine Bianco ◽  
Henry C. Lee ◽  
...  
Keyword(s):  
2017 ◽  
Vol 7 (1) ◽  
pp. 31-39
Author(s):  
Gabrielle Simcock ◽  
Helen Stapleton ◽  
Sue Kildea ◽  
Laura Shoo ◽  
David P. Laplante ◽  
...  

The study was designed to investigate the impact of disaster-related prenatal maternal stress on neonates’ reactivity to the routinely administered, painful, newborn screen procedure (heelstick or heel prick). We hypothesized that pregnancy exposure to a flood stressor would affect fetal developmental pathways and subsequently neonatal responses to other stressful events, including the newborn screen. The pregnant women we recruited were affected by sudden onset floods in Queensland, Australia in 2011. Using methods similar to those described in the literature, we collected neonatal saliva immediately prior to the newborn screen and +20 and +40 min afterwards. Saliva sampling was halted after failed saliva collection attempts by trained research staff on 17 newborns. This article discusses reasons for our failure, including the influence of bioethical concerns and the requirement that research activities are compliant with hospital policies as well as the necessity of publishing studies that fail to replicate prior research.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Jessica I. Gold ◽  
Ian M. Campbell ◽  
Can Ficicioglu

The onset of the COVID-19 pandemic caused significant changes in healthcare delivery. Telemedicine rapidly and unexpectedly became the primary vehicle for ambulatory management. As newborn screen (NBS) referrals require varying levels of acuity, whether telemedicine could be used as a safe and effective medium to return these results were unknown. We sent an online survey to metabolism providers internationally to investigate triage differences of abnormal NBS results during the COVID-19 pandemic. The survey compared personal practice for the periods of March–June 2019 and March–June 2020. Responses were received from 44 providers practicing in 8 countries. Nearly all (93%) practiced in areas of widespread SARS-COV-2 community transmission during spring 2020. There was a significant expansion of telemedicine use for NBS referrals at the onset of the COVID-19 pandemic (OR: 12, 95% CI: 3.66–39.3, p < 0.0001). Telehealth primarily replaced in-person ambulatory metabolism visits. The increased frequency of virtual care was similar across NBS analytes. Providers found telehealth for NBS referral equally efficacious to in-person care. Institutional patient surveys showed no difference in satisfaction with provider communication, provider empathy, or appointment logistics. Our survey was limited by unprecedented disruption in healthcare delivery, necessitating further validation of telegenetics for NBS in the post-pandemic era. Nevertheless, our findings demonstrate that telemedicine is potentially a viable and practical tool for triaging abnormal NBS results.


2020 ◽  
Vol 105 (4) ◽  
pp. e1561-e1568
Author(s):  
Erica L Wright ◽  
Peter R Baker

Abstract Purpose Neonatal macrosomia is a known complication of maternal obesity and gestational diabetes, and it is a risk factor for obesity and diabetes in offspring. Amino acids and acylcarnitines are biomarkers for obesity in children and adults. These analytes, which are also routinely obtained on the newborn screen, have not been well-characterized in macrosomic newborns. The impact of macrosomia on rates of false-positive results in the newborn screen has also not been well-studied. We test the hypothesis that macrosomia is an interfering factor for amino acids and/or acylcarnitines on the newborn screen. Methods Newborn screening analytes determined by tandem mass spectroscopy were obtained from the Colorado Department of Public Health and Environment archives (2016–2018). This included metabolite concentrations obtained at 24–72 hours of life from newborns with birth weight 2500 to 3999 g (nonmacrosomic, n = 131 896) versus 4000 to 8000 g (macrosomic, n = 7806). Mother/infant phenotypic data were limited to information provided on the newborn screening dried blood spot card. Data were analyzed using Student t-test and chi-squared analysis. Results Macrosomic newborns had elevations in C2, C3, dicarboxylic, and long-chain acylcarnitines (specifically C16 and C18 species). C3 and C18:1 were 2 to 3 times more likely to be above predetermined state cutoffs in macrosomic versus nonmacrosomic newborns (both male and female). Main conclusions Macrosomia is an interfering factor for the analytes C3 and C18:1, leading to higher risk of false-positive results for methylmalonic/propionic acidemia and carnitine palmitoyl transferase type 2 deficiency, respectively. Analyte patterns found in macrosomic neonates correspond with similar analyte patterns in obese children and adults.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document