scholarly journals VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Weiling Liu ◽  
Chuanwang Miao ◽  
Shaosen Zhang ◽  
Yachen Liu ◽  
Xiangjie Niu ◽  
...  

AbstractRadiotherapy remains the mainstay for treatment of various types of human cancer; however, the clinical efficacy is often limited by radioresistance, in which the underlying mechanism is largely unknown. Here, using esophageal squamous cell carcinoma (ESCC) as a model, we demonstrate that guanine nucleotide exchange factor 2 (VAV2), which is overexpressed in most human cancers, plays an important role in primary and secondary radioresistance. We have discovered for the first time that VAV2 is required for the Ku70/Ku80 complex formation and participates in non-homologous end joining repair of DNA damages caused by ionizing radiation. We show that VAV2 overexpression substantially upregulates signal transducer and activator of transcription 1 (STAT1) and the STAT1 inhibitor Fludarabine can significantly promote the sensitivity of radioresistant patient-derived ESCC xenografts in vivo in mice to radiotherapy. These results shed new light on the mechanism of cancer radioresistance, which may be important for improving clinical radiotherapy.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lars Langemeyer ◽  
Ann-Christin Borchers ◽  
Eric Herrmann ◽  
Nadia Füllbrunn ◽  
Yaping Han ◽  
...  

Endosomes and lysosomes harbor Rab5 and Rab7 on their surface as key proteins involved in their identity, biogenesis, and fusion. Rab activation requires a guanine nucleotide exchange factor (GEF), which is Mon1-Ccz1 for Rab7. During endosome maturation, Rab5 is replaced by Rab7, though the underlying mechanism remains poorly understood. Here, we identify the molecular determinants for Rab conversion in vivo and in vitro, and reconstitute Rab7 activation with yeast and metazoan proteins. We show (i) that Mon1-Ccz1 is an effector of Rab5, (ii) that membrane-bound Rab5 is the key factor to directly promote Mon1-Ccz1 dependent Rab7 activation and Rab7-dependent membrane fusion, and (iii) that this process is regulated in yeast by the casein kinase Yck3, which phosphorylates Mon1 and blocks Rab5 binding. Our study thus uncovers the minimal feed-forward machinery of the endosomal Rab cascade and a novel regulatory mechanism controlling this pathway.


2020 ◽  
Vol 21 (3) ◽  
pp. 823 ◽  
Author(s):  
Daniel Becsky ◽  
Szuzina Gyulai-Nagy ◽  
Arpad Balind ◽  
Peter Horvath ◽  
Laszlo Dux ◽  
...  

Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.


2003 ◽  
Vol 160 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Metello Innocenti ◽  
Emanuela Frittoli ◽  
Isabella Ponzanelli ◽  
John R. Falck ◽  
Saskia M. Brachmann ◽  
...  

Class I phosphoinositide 3-kinases (PI3Ks) are implicated in many cellular responses controlled by receptor tyrosine kinases (RTKs), including actin cytoskeletal remodeling. Within this pathway, Rac is a key downstream target/effector of PI3K. However, how the signal is routed from PI3K to Rac is unclear. One possible candidate for this function is the Rac-activating complex Eps8–Abi1–Sos-1, which possesses Rac-specific guanine nucleotide exchange factor (GEF) activity. Here, we show that Abi1 (also known as E3b1) recruits PI3K, via p85, into a multimolecular signaling complex that includes Eps8 and Sos-1. The recruitment of p85 to the Eps8–Abi1–Sos-1 complex and phosphatidylinositol 3, 4, 5 phosphate (PIP3), the catalytic product of PI3K, concur to unmask its Rac-GEF activity in vitro. Moreover, they are indispensable for the activation of Rac and Rac-dependent actin remodeling in vivo. On growth factor stimulation, endogenous p85 and Abi1 consistently colocalize into membrane ruffles, and cells lacking p85 fail to support Abi1-dependent Rac activation. Our results define a mechanism whereby propagation of signals, originating from RTKs or Ras and leading to actin reorganization, is controlled by direct physical interaction between PI3K and a Rac-specific GEF complex.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Salil Sharma ◽  
Soban Umar ◽  
Gabe Wong ◽  
Denise Mai ◽  
Mohamad Navab ◽  
...  

Pulmonary hypertension (PH) is a chronic lung disease associated with severe vascular disorders leading to right ventricular(RV) failure. An HDL mimetic peptide, 4F, has been shown to be effective for the treatment of atherosclerosis and a number of inflammatory disorders. Here, we explored whether 4F can rescue advanced PH by controlling the expression of specific microRNAs (miRs). PH was induced in rats by a single injection of monocrotaline (MCT, 60mg/kg, s.c .) or by placing mice in hypoxia chamber(O2≤10%) for 21 days. MCT-rats or hypoxic mice received 4F therapy (50mg/kg/day, s.c .,days 21-30 in MCT model and days 14-21 in hypoxia model). We performed microRNA microarray analysis (non-affymetrix) in lung tissues of CTRL, PH and 4F-rescued groups. OE of miR193 was achieved by intratracheal instillation of 20nM dose at days 16, 21 and 26 in MCT model or at days 14 and 18 in hypoxia model. 4F therapy starting after the establishment of PH in both MCT and hypoxia models improved significantly RV pressure (RVP) and RV hypertrophy index (RVP=46±3 vs RVP=74±1 mmHg in PH; RV/LV+IVS=0.38±0.02 vs RV/(LV+IVS)=0.68±0.05 in PH, p<0.05 vs PH and in hypoxia model RVP=22±3.8 vs. 36.91±5.74 in PH and 20.93±2.52mmHg in ctrl, p<0.05 vs PH ). Microarray and qPCR showed downregulation of miR-193 by ~3 fold in MCT model. 4F therapy normalized miR-193 to ctrl levels. MiR-193 OE in both MCT-rats and hypoxic-mice rescued PH (RVP=38±5.5mmHg, RV/LV+IVS=0.37±0.034 in MCT-rats and RVP=25.48±0.88mmHg in hypoxic-mice). Lung sections showed increased arteriolar muscularization and ox-LDL deposition in the PH group, prevented by miR-193 therapy. In vivo, OE of miR-193 suppressed transcription of in-silico targets ALOX5, a lipoxygenase; IGF1R, insulin-like growth factor 1 receptor and ARHGEF12, a Rho guanine nucleotide exchange factor and decreased human pulmonary artery smooth muscle cell (HPASMC) proliferation in vitro in the presence of serum or 12-HETE by >2 folds whereas miR-193 KD increased proliferation. In conclusion, 4F rescues pre-existing severe PH by targeting genes associated with HETEs and HODEs production, inflammation and growth via inducing miR-193.


2006 ◽  
Vol 26 (23) ◽  
pp. 8964-8975 ◽  
Author(s):  
Elena V. Kostenko ◽  
Oyenike O. Olabisi ◽  
Sutapa Sahay ◽  
Pedro L. Rodriguez ◽  
Ian P. Whitehead

ABSTRACT Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) with in vitro exchange activity specific for RhoA and Cdc42. Like many RhoGEF family members, the in vivo exchange activity of Dbs is restricted in a cell-specific manner. Here we report the characterization of a novel scaffold protein (designated cell cycle progression protein 1 [Ccpg1]) that interacts with Dbs and modulates its in vivo exchange specificity. When coexpressed in mammalian cells, Ccpg1 binds to the Dbl homology/pleckstrin homology domain tandem motif of Dbs and inhibits its exchange activity toward RhoA, but not Cdc42. Expression of Ccpg1 correlates with the ability of Dbs to activate endogenous RhoA in cultured cells, and suppression of endogenous Ccpg1 expression potentiates Dbs exchange activity toward RhoA. The isolated Dbs binding domain of Ccpg1 is not sufficient to suppress Dbs exchange activity on RhoA, thus suggesting a regulatory interaction. Ccpg1 mediates recruitment of endogenous Src kinase into Dbs-containing complexes and interacts with the Rho family member Cdc42. Collectively, our studies suggest that Ccpg1 represents a new class of regulatory scaffold protein that can function as both an assembly platform for Rho protein signaling complexes and a regulatory protein which can restrict the substrate utilization of a promiscuous RhoGEF family member.


2008 ◽  
Vol 183 (3) ◽  
pp. 499-511 ◽  
Author(s):  
Sophia Semerdjieva ◽  
Barry Shortt ◽  
Emma Maxwell ◽  
Sukhdeep Singh ◽  
Paul Fonarev ◽  
...  

Here we investigate the role of rab5 and its cognate exchange factors rabex-5 and hRME-6 in the regulation of AP2 uncoating from endocytic clathrin-coated vesicles (CCVs). In vitro, we show that the rate of AP2 uncoating from CCVs is dependent on the level of functional rab5. In vivo, overexpression of dominant-negative rab5S34N, or small interfering RNA (siRNA)–mediated depletion of hRME-6, but not rabex-5, resulted in increased steady-state levels of AP2 associated with endocytic vesicles, which is consistent with reduced uncoating efficiency. hRME-6 guanine nucleotide exchange factor activity requires hRME-6 binding to α-adaptin ear, which displaces the ear-associated μ2 kinase AAK1. siRNA-mediated depletion of hRME-6 increases phospho-μ2 levels, and expression of a phosphomimetic μ2 mutant increases levels of endocytic vesicle-associated AP2. Depletion of hRME-6 or rab5S35N expression also increases the levels of phosphoinositide 4,5-bisphosphate (PtdIns(4,5)P2) associated with endocytic vesicles. These data are consistent with a model in which hRME-6 and rab5 regulate AP2 uncoating in vivo by coordinately regulating μ2 dephosphorylation and PtdIns(4,5)P2 levels in CCVs.


2004 ◽  
Vol 15 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Nina Offenhäuser ◽  
Alessandro Borgonovo ◽  
Andrea Disanza ◽  
Pascale Romano ◽  
Isabella Ponzanelli ◽  
...  

Sos-1, a guanine nucleotide exchange factor (GEF), eps8 and Abi1, two signaling proteins, and the lipid kinase phosphoinositide 3-kinase (PI3-K), assemble in a multimolecular complex required for Rac activation leading to actin cytoskeletal remodeling. Consistently, eps8 –/– fibroblasts fail to form membrane ruffles in response to growth factor stimulation. Surprisingly, eps8 null mice are healthy, fertile, and display no overt phenotype, suggesting the existence of functional redundancy within this pathway. Here, we describe the identification and characterization of a family of eps8-related proteins, comprising three novel gene products, named eps8L1, eps8L2, and eps8L3. Eps8Ls display collinear topology and 27–42% identity to eps8. Similarly to eps8, eps8Ls interact with Abi1 and Sos-1; however, only eps8L1 and eps8L2 activate the Rac-GEF activity of Sos-1, and bind to actin in vivo. Consistently, eps8L1 and eps8L2, but not eps8L3, localize to PDGF-induced, F-actin–rich ruffles and restore receptor tyrosine kinase (RTK)-mediated actin remodeling when expressed in eps8 –/– fibroblasts. Thus, the eps8Ls define a novel family of proteins responsible for functional redundancy in the RTK-activated signaling pathway leading to actin remodeling. Finally, the patterns of expression of eps8 and eps8L2 in mice are remarkably overlapping, thus providing a likely explanation for the lack of overt phenotype in eps8 null mice.


2008 ◽  
Vol 19 (10) ◽  
pp. 4328-4340 ◽  
Author(s):  
Junwon Kim ◽  
Selma Sun Jang ◽  
Kiwon Song

In budding yeast, Tem1 is a key regulator of mitotic exit. Bfa1/Bub2 stimulates Tem1 GTPase activity as a GTPase-activating protein (GAP). Lte1 possesses a guanine-nucleotide exchange factor (GEF) domain likely for Tem1. However, recent observations showed that cells may control mitotic exit without either Lte1 or Bfa1/Bub2 GAP activity, obscuring how Tem1 is regulated. Here, we assayed BFA1 mutants with varying GAP activities for Tem1, showing for the first time that Bfa1/Bub2 GAP activity inhibits Tem1 in vivo. A decrease in GAP activity allowed cells to bypass mitotic exit defects. Interestingly, different levels of GAP activity were required to prevent mitotic exit depending on the type of perturbation. Although essential, more Bfa1/Bub2 GAP activity was needed for spindle damage than for DNA damage to fully activate the checkpoint. Conversely, Bfa1/Bub2 GAP activity was insufficient to delay mitotic exit in cells with misoriented spindles. Instead, decreased interaction of Bfa1 with Kin4 was observed in BFA1 mutant cells with a defective spindle position checkpoint. These findings demonstrate that there is a GAP-independent surveillance mechanism of Bfa1/Bub2, which, together with the GTP/GDP switch of Tem1, may be required for the genomic stability of cells with misaligned spindles.


2009 ◽  
Vol 20 (17) ◽  
pp. 3905-3917 ◽  
Author(s):  
Diana L. Ford-Speelman ◽  
Joseph A. Roche ◽  
Amber L. Bowman ◽  
Robert J. Bloch

Obscurin is a large (∼800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurin's rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurin's rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurin's rhoGEF domain. Our results suggest that obscurin's rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document