Investigating the blood–spinal cord barrier in preclinical models: a systematic review of in vivo imaging techniques

Spinal Cord ◽  
2021 ◽  
Author(s):  
Joshua Bakhsheshian ◽  
Ben A. Strickland ◽  
William J. Mack ◽  
Berislav V. Zlokovic
2005 ◽  
Vol 4 (4) ◽  
pp. 7290.2005.05133 ◽  
Author(s):  
Matthew J. Hardwick ◽  
Ming-Kai Chen ◽  
Kwamena Baidoo ◽  
Martin G. Pomper ◽  
Tomás R. Guilarte

The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-( R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals ( p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-( R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1011
Author(s):  
Camille Maltais-Bilodeau ◽  
Ewa Henckel ◽  
Kelly D. Cobey ◽  
Nadera Ahmadzai ◽  
Becky Skidmore ◽  
...  

Introduction: Necrotizing enterocolitis is an acute inflammatory disease of the intestine that can lead to necrosis and bowel perforation. It is a severe complication of preterm birth. It’s mortality rate is up to 50% and survival after necrotizing enterocolitis leads to long-term complications. The current treatment is supportive and includes bowel rest and decompression and antibiotics. Thus, new treatments are necessary to reduce mortality and morbidity. Mesenchymal stromal cells are known to have anti-inflammatory properties and might be a promising option for treatment. Here we present a protocol for a systematic review with the aim to explore the efficacy of cell therapies with mesenchymal stromal cells in animal models of necrotizing enterocolitis. The primary outcome is histological signs of necrotizing enterocolitis. Additional outcomes include survival, bowel perforation, gut permeability, gut motility, levels of inflammatory markers, cytokine levels and adverse events. Methods: We will conduct a systematic search of MEDLINE, Embase, and Web of Science databases. The retrieved records will be screened individually by two investigators. We will include all preclinical in vivo animal models of experimentally induced necrotizing enterocolitis that evaluate the efficacy of mesenchymal stromal cells or other cell therapy treatments. Outcome data will be extracted from each article and risk of bias assessment performed. Funnel plots and SYRCLE’s risk of bias tool for animal studies will be used. Data will be reported as ratios, divided in predefined subgroups where relevant. Conclusions: This systematic review aims to examine the efficacy of mesenchymal stromal cells in preclinical models of necrotizing enterocolitis and whether there is sufficient evidence to support a clinical trial of efficacy and safety of the treatment with mesenchymal stromal cells in infants with necrotizing enterocolitis.


IntraVital ◽  
2012 ◽  
Vol 1 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Mynthia Cabrera ◽  
Ute Frevert

Author(s):  
A. Busato ◽  
P. Fumene Feruglio ◽  
P.P. Parnigotto ◽  
P. Marzola ◽  
A. Sbarbati

In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry.


2012 ◽  
Vol 9 (3) ◽  
pp. 297-302 ◽  
Author(s):  
Matthew J Farrar ◽  
Ida M Bernstein ◽  
Donald H Schlafer ◽  
Thomas A Cleland ◽  
Joseph R Fetcho ◽  
...  

Author(s):  
Irma Mahmutovic Persson ◽  
Karin Von Wachenfeldt ◽  
Kashmira Pindoria ◽  
Juan A. Delgado-San Martin ◽  
Simon Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document