scholarly journals In vivo imaging techniques: a new era for histochemical analysis

Author(s):  
A. Busato ◽  
P. Fumene Feruglio ◽  
P.P. Parnigotto ◽  
P. Marzola ◽  
A. Sbarbati

In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry.

2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Georgios Batsios ◽  
Celine Taglang ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
Joseph Costello ◽  
...  

Abstract Telomere shortening constitutes a natural barrier to uncontrolled proliferation and all tumors must find a mechanism of maintaining telomere length. Most human tumors, including high-grade primary glioblastomas (GBMs) and low-grade oligodendrogliomas (LGOGs) achieve telomere maintenance via reactivation of the expression of telomerase reverse transcriptase (TERT), which is silenced in normal somatic cells. TERT expression is, therefore, a driver of tumor proliferation and, due to this essential role, TERT is also a therapeutic target. However, non-invasive methods of imaging TERT are lacking. The goal of this study was to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers of TERT expression that will enable non-invasive visualization of tumor burden in LGOGs and GBMs. First, we silenced TERT expression by RNA interference in patient-derived LGOG (SF10417, BT88) and GBM (GS2) models. Our results linked TERT silencing to significant reductions in steady-state levels of NADH in all models. NADH is essential for the conversion of pyruvate to lactate, suggesting that measuring pyruvate flux to lactate could be useful for imaging TERT status. Recently, deuterium (2H)-MRS has emerged as a novel, clinically translatable method of monitoring metabolic fluxes in vivo. However, to date, studies have solely examined 2H-glucose and the use of [U-2H]pyruvate for non-invasive 2H-MRS has not been tested. Following intravenous injection of a bolus of [U-2H]pyruvate, lactate production was higher in mice bearing orthotopic LGOG (BT88 and SF10417) and GBM (GS2) tumor xenografts relative to tumor-free mice, suggesting that [U-2H]pyruvate has the potential to monitor TERT expression in vivo. In summary, our study, for the first time, shows the feasibility and utility of [U-2H]pyruvate for in vivo imaging. Importantly, since 2H-MRS can be implemented on clinical scanners, our results provide a novel, non-invasive method of integrating information regarding a fundamental cancer hallmark, i.e. TERT, into glioma patient management.


Author(s):  
Danielle Ayumi Nishimura ◽  
Ana Luiza Esteves Carneiro ◽  
Kaisermann Costa ◽  
Wladimir Gushiken de Campos ◽  
Jefferson Xavier de Oliveira ◽  
...  

Salivary glands tumors account for 2-5% of tumors in the head and neck region, possibly being benign or malignant. Magnetic resonance imaging (MRI) presents high soft tissue contrast resolution, thus being an excellent method for salivary gland analysis. The objective of this literature review is to analyze MRI as an evaluation instrument for the diagnosis of salivary glands lesions. Compared to other imaging techniques, MRI can better evaluate the relationship between adjacent anatomical structures, presenting greater sensitivity and specificity.


2005 ◽  
Vol 19 (4) ◽  
pp. 181-190 ◽  
Author(s):  
Chien-Kuo Wang ◽  
Tsyh-Jyi Hsieh ◽  
Twei-Shiun Jaw ◽  
Jau-Nan Lin ◽  
Gin-Chung Liu ◽  
...  

A technique calledin vivomagnetic resonance spectroscopy (MRS) can be performed along with magnetic resonance imaging (MRI) to obtain information about the chemical content of musculoskeletal lesions. This information can be used for several clinical applications, such as improving the accuracy of lesion diagnosis and monitoring the response to cancer therapies. Initial MRS studies of musculoskeletal tumors show promising results, and the technique has been incorporating into the MRI routine protocols. This article introduces1H MRS of the musculoskeletal tumors, reviews the literature, discusses current methods and technical issues, and describes applications for treatment monitoring and lesion diagnosis.


Author(s):  
Ruiqing Ni

Amyloid-beta plays an important role in the pathogenesis of Alzheimer’s disease. Aberrant amyloid-beta and tau accumulation induce neuroinflammation, cerebrovascular alterations, synaptic deficits, functional deficits, and neurodegeneration, leading to cognitive impairment. Animal models recapitulating the amyloid-beta pathology such as transgenic, knock-in mouse and rat models have facilitated the understanding of disease mechanisms and development of therapeutics targeting at amyloid-beta. There is a rapid advance in high-field MR in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences such as diffusion tensor imaging, arterial spin labelling, resting-state functional MRI, anatomical MRI, MR spectroscopy as well as contrast agents have been developed for the applications in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole brain field-of-view. MRI have been utilized to visualize non-invasively the amyloid-beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, cerebrovascular and glymphatic system in animal models of amyloidosis. Many of the readouts are translational in clinical MRI in the brain of patients with Alzheimer’s disease. In this review, we summarize the recent advance of using MRI for visualizing the pathophysiology in amyloidosis animal model. We discuss the outstanding challenges in brain imaging using MRI in small animal and propose future outlook in visualizing amyloid-beta-related alterations in brain of animal models.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Anastasia Zikou ◽  
Chrissa Sioka ◽  
George A. Alexiou ◽  
Andreas Fotopoulos ◽  
Spyridon Voulgaris ◽  
...  

Glioblastoma (GBM) is the most common primary malignant type of brain neoplasm in adults and carries a dismal prognosis. The current standard of care for GBM is surgical excision followed by radiation therapy (RT) with concurrent and adjuvant temozolomide-based chemotherapy (TMZ) by six additional cycles. In addition, antiangiogenic therapy with an antivascular endothelial growth factor (VEGF) agent has been used for recurrent glioblastoma. Over the last years, new posttreatment entities such as pseudoprogression and pseudoresponse have been recognized, apart from radiation necrosis. This review article focuses on the role of different imaging techniques such as conventional magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), dynamic contrast enhancement (DCE-MRI) and dynamic susceptibility contrast (DSE-MRI) perfusion, magnetic resonance spectroscopy (MRS), and PET/SPECT in differentiation of such treatment-related changes from tumor recurrence.


2012 ◽  
Vol 12 (1) ◽  
pp. 24-28
Author(s):  
Anvita Bieza ◽  
Gaida Krumina

SummaryIntroduction.The further therapeutic management decisions in glioma patients after the radiation/chemotherapy may be difficult because the treatment induced brain injury can mimic tumor recurrence clinically and on neuroimaging.Aim of the Studywas to assess the usefulness of magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in differentiation between glial tumor recurrence and radiation/chemotherapy-induced changes in the brain.Material and methods.73 patients with primary brain gliomas and 77 gliomas patients after combined therapy with possibly treatment induced changes underwent MRS and DTI. Fractional anisotropy (FA) and metabolite ratios were measured in the tumor and pathological signal intensity area adjacent to post-surgical cavity.Results.Mean choline/creatine (Cho/Cr), myoinositol/creatine (MI/Cr), lactate-lipid/creatine (LL/Cr) ratios of brain gliomas was statistically significant higher and FA values lower than those in the pathological signal intensity area adjacent to post-surgical cavity. No differences were found in mean N-acetyl aspartate/creatine (NAA/Cr) ratios among two groups.Conclusions.Our study suggests that Cho/Cr, MI/Cr, LL/Cr and FA measures should be recommended as additional highly informative tool to conventional structural magnetic resonance imaging (MRI) when monitoring gliomas patients after combined therapy.


2017 ◽  
Vol 16 (02) ◽  
pp. 039-055 ◽  
Author(s):  
Mary Rolfes ◽  
Julie Guerin ◽  
Justin Brucker ◽  
Peter Kalina

AbstractEvaluation of abusive head trauma (AHT) in children is an ongoing diagnostic challenge, as there are currently no standard criteria or objective tests for differentiating AHT from accidental trauma. The use of neuroradiologic imaging has an increasingly important role in identifying AHT and often involves a combination of skull radiographs, computerized tomography (CT), and conventional magnetic resonance imaging (MRI) with diffusion-weighted imaging, susceptibility-weighted imaging, and occasionally magnetic resonance spectroscopy. Development of more advanced imaging techniques includes diffusion tensor imaging and arterial spin labeling. MRI may provide insight into different mechanisms of injury and long-term impacts of AHT. A better understanding of the available imaging modalities, typical findings, and their respective contribution to an accurate diagnosis can help guide physicians, other health care providers, as well as law enforcement in the evaluation of children with suspected AHT.


Sign in / Sign up

Export Citation Format

Share Document