scholarly journals PET evaluation of light-induced modulation of microglial activation and GLP-1R expression in depressive rats

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Liu ◽  
Lizhen Wang ◽  
Donghui Pan ◽  
Mingzhu Li ◽  
Yaoqi Li ◽  
...  

AbstractLight therapy has been accepted as a promising therapeutic choice for depression. Positron emission tomography (PET) combined with specific radiotracers has great benefits for revealing pathogenesis and developing therapeutics. This study aimed to investigate the influences of light therapy on microglial activation and glucagon-like peptide-1 receptor (GLP-1R) expression in the brain of depressive rats using [18F]DPA-714 and [18F]exendin-4 PET. The results showed that chronic unpredictable mild stress (CUMS)-induced depressive rats had poorer performance in behavioral tests compared to normal rats (p < 0.05) and the depressive-like behavior could be ameliorated by light therapy. Besides, depressive rats had significantly higher [18F]DPA-714 uptake and lower [18F]FDG uptake compare to normal rats in 11 and 9 regions of interest (ROIs) of the brain, respectively (p < 0.05). After 5 weeks of light therapy, higher [18F]FDG and [18F]exendin-4 uptake was observed in most ROIs of light therapy-treated depressive rats compared to untreated depressive rats (p < 0.05) and no significant differences existed in [18F]DPA-714 uptake between the two groups. This study demonstrated that light therapy can ameliorate depressive-like behavior, improve glucose metabolism, and halt the decline of brain GLP-1R expression of depressive rats, but have no effects on microglial activation caused by CUMS. Besides, this study validated that [18F]DPA-714 and [18F]exendin-4 PET have the potential for noninvasive evaluation of microglial activation and GLP-1R expression in the brain of depression.

2018 ◽  
Vol 27 (6) ◽  
pp. 2386-2397 ◽  
Author(s):  
Mia Ståhle ◽  
Ville Kytö ◽  
Max Kiugel ◽  
Heidi Liljenbäck ◽  
Olli Metsälä ◽  
...  

Abstract Background Activation of glucagon-like peptide-1 receptor (GLP-1R) signaling protects against cardiac dysfunction and remodeling after myocardial infarction (MI). The aim of the study was to evaluate 68Ga-NODAGA-exendin-4 positron emission tomography (PET) for assessment of GLP-1R expression after MI in rats. Methods and Results Rats were studied at 3 days, 1 and 12 weeks after permanent coronary ligation or a sham-operation. Rats were injected with 68Ga-NODAGA-exendin-4 and scanned with PET and contrast-enhanced computed tomography (CT) followed by digital autoradiography and histology of left ventricle tissue sections. 68Ga-NODAGA-exendin-4 PET/CT showed focally increased tracer uptake in the infarcted regions peaking at 3 days and continuing at 1 week after MI. Pre-treatment with an unlabeled exendin-4 peptide significantly reduced 68Ga-NODAGA-exendin-4 uptake. By autoradiography, 68Ga-NODAGA-exendin-4 uptake was 8.6-fold higher in the infarcted region and slightly increased also in the remote, non-infarcted myocardium at 1 week and 12 weeks post-MI compared with sham. Uptake of 68Ga-NODAGA-exendin-4 correlated with the amount of CD68-positive macrophages in the infarcted area and alpha-smooth muscle actin staining in the remote myocardium. Conclusions 68Ga-NODAGA-exendin-4 PET detects up-regulation of cardiac GLP-1R expression during healing of MI in rats and may provide information on the activated repair mechanisms after ischemic myocardial injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clément Delage ◽  
Nicolas Vignal ◽  
Coralie Guerin ◽  
Toufik Taib ◽  
Clément Barboteau ◽  
...  

AbstractTraumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.


2012 ◽  
Vol 32 (12) ◽  
pp. 2146-2152 ◽  
Author(s):  
Michael Gejl ◽  
Lærke Egefjord ◽  
Susanne Lerche ◽  
Kim Vang ◽  
Bo Martin Bibby ◽  
...  

Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD and stroke: Although the mechanism is unclear, glucose homeostasis appears to be important. We conducted a randomized, double-blinded, placebo-controlled crossover study in nine healthy males. Positron emission tomography was used to determine the effect of GLP-1 on cerebral glucose transport and metabolism during a hyperglycemic clamp with 18fluoro-deoxy-glucose as tracer. Glucagon-like peptide-1 lowered brain glucose ( P = 0.023) in all regions. The cerebral metabolic rate for glucose was increased everywhere ( P = 0.039) but not to the same extent in all regions ( P = 0.022). The unidirectional glucose transfer across the blood-brain barrier remained unchanged ( P = 0.099) in all regions, while the unidirectional clearance and the phosphorylation rate increased ( P = 0.013 and 0.017), leading to increased net clearance of the glucose tracer ( P = 0.006). We show that GLP-1 plays a role in a regulatory mechanism involved in the actions of GLUT1 and glucose metabolism: GLP-1 ensures less fluctuation of brain glucose levels in response to alterations in plasma glucose, which may prove to be neuroprotective during hyperglycemia.


2021 ◽  
Vol 22 (15) ◽  
pp. 8051
Author(s):  
Rodrigo Teodoro ◽  
Daniel Gündel ◽  
Winnie Deuther-Conrad ◽  
Lea Ueberham ◽  
Magali Toussaint ◽  
...  

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Si Eun Kim ◽  
Byungju Lee ◽  
Hyemin Jang ◽  
Juhee Chin ◽  
Ching Soong Khoo ◽  
...  

Abstract Background The presence of ß-amyloid (Aß) in the brain can be identified using amyloid PET. In clinical practice, the amyloid PET is interpreted based on dichotomous visual rating, which renders focal Aß accumulation be read as positive for Aß. However, the prognosis of patients with focal Aß deposition is not well established. Thus, we investigated cognitive trajectories of patients with focal Aß deposition. Methods We followed up 240 participants (112 cognitively unimpaired [CU], 78 amnestic mild cognitive impairment [aMCI], and 50 Alzheimer’s disease (AD) dementia [ADD]) for 2 years from 9 referral centers in South Korea. Participants were assessed with neuropsychological tests and 18F-flutemetamol (FMM) positron emission tomography (PET). Ten regions (frontal, precuneus/posterior cingulate (PPC), lateral temporal, parietal, and striatum of each hemisphere) were visually examined in the FMM scan, and participants were divided into three groups: No-FMM, Focal-FMM (FMM uptake in 1–9 regions), and Diffuse-FMM. We used mixed-effects model to investigate the speed of cognitive decline in the Focal-FMM group according to the cognitive level, extent, and location of Aß involvement, in comparison with the No- or Diffuse-FMM group. Results Forty-five of 240 (18.8%) individuals were categorized as Focal-FMM. The rate of cognitive decline in the Focal-FMM group was faster than the No-FMM group (especially in the CU and aMCI stage) and slower than the Diffuse-FMM group (in particular in the CU stage). Within the Focal-FMM group, participants with FMM uptake to a larger extent (7–9 regions) showed faster cognitive decline compared to those with uptake to a smaller extent (1–3 or 4–6 regions). The Focal-FMM group was found to have faster cognitive decline in comparison with the No-FMM when there was uptake in the PPC, striatum, and frontal cortex. Conclusions When predicting cognitive decline of patients with focal Aß deposition, the patients’ cognitive level, extent, and location of the focal involvement are important.


Sign in / Sign up

Export Citation Format

Share Document