scholarly journals The induction and consequences of Influenza A virus-induced cell death

2018 ◽  
Vol 9 (10) ◽  
Author(s):  
Georgia K. Atkin-Smith ◽  
Mubing Duan ◽  
Weisan Chen ◽  
Ivan K. H. Poon
2022 ◽  
Vol 12 ◽  
Author(s):  
Rui Gui ◽  
Quanjiao Chen

Viral infection usually leads to cell death. Moderate cell death is a protective innate immune response. By contrast, excessive, uncontrolled cell death causes tissue destruction, cytokine storm, or even host death. Thus, the struggle between the host and virus determines whether the host survives. Influenza A virus (IAV) infection in humans can lead to unbridled hyper-inflammatory reactions and cause serious illnesses and even death. A full understanding of the molecular mechanisms and regulatory networks through which IAVs induce cell death could facilitate the development of more effective antiviral treatments. In this review, we discuss current progress in research on cell death induced by IAV infection and evaluate the role of cell death in IAV replication and disease prognosis.


2020 ◽  
Vol 295 (24) ◽  
pp. 8325-8330 ◽  
Author(s):  
Sannula Kesavardhana ◽  
R. K. Subbarao Malireddi ◽  
Amanda R. Burton ◽  
Shaina N. Porter ◽  
Peter Vogel ◽  
...  

Z-DNA-binding protein 1 (ZBP1) is an innate immune sensor of nucleic acids that regulates host defense responses and development. ZBP1 activation triggers inflammation and pyroptosis, necroptosis, and apoptosis (PANoptosis) by activating receptor-interacting Ser/Thr kinase 3 (RIPK3), caspase-8, and the NLRP3 inflammasome. ZBP1 is unique among innate immune sensors because of its N-terminal Zα1 and Zα2 domains, which bind to nucleic acids in the Z-conformation. However, the specific role of these Zα domains in orchestrating ZBP1 activation and subsequent inflammation and cell death is not clear. Here we generated Zbp1ΔZα2/ΔZα2 mice that express ZBP1 lacking the Zα2 domain and demonstrate that this domain is critical for influenza A virus–induced PANoptosis and underlies perinatal lethality in mice in which the RIP homotypic interaction motif domain of RIPK1 has been mutated (Ripk1mRHIM/mRHIM). Deletion of the Zα2 domain in ZBP1 abolished influenza A virus–induced PANoptosis and NLRP3 inflammasome activation. Furthermore, deletion of the Zα2 domain of ZBP1 was sufficient to rescue Ripk1mRHIM/mRHIM mice from perinatal lethality caused by ZBP1-driven cell death and inflammation. Our findings identify the essential role of the Zα2 domain of ZBP1 in several physiological functions and establish a link between Z-RNA sensing via the Zα2 domain and promotion of influenza-induced PANoptosis and perinatal lethality.


2001 ◽  
Vol 7 (12) ◽  
pp. 1306-1312 ◽  
Author(s):  
Weisan Chen ◽  
Paul A. Calvo ◽  
Daniela Malide ◽  
James Gibbs ◽  
Ulrich Schubert ◽  
...  

2004 ◽  
Vol 78 (12) ◽  
pp. 6304-6312 ◽  
Author(s):  
A. N. Chanturiya ◽  
G. Basañez ◽  
U. Schubert ◽  
P. Henklein ◽  
J. W. Yewdell ◽  
...  

ABSTRACT A frameshifted region of the influenza A virus PB1 gene encodes a novel protein, termed PB1-F2, a mitochondrial protein that can induce cell death. Many proapoptotic proteins are believed to act at the mitochondrial outer membrane to form an apoptotic pore with lipids. We studied the interaction of isolated, synthetic PB1-F2 (sPB1-F2) peptide with planar phospholipid bilayer membranes. The presence of nanomolar concentrations of peptide in the bathing solution induced a transmembrane conductance that increased in a potential-dependent manner. Positive potential on the side of protein addition resulted in a severalfold increase in the rate of change of membrane conductance. sPB1-F2-treated membranes became permeable to monovalent cations, chloride, and to a lesser extent, divalent ions. Despite various experimental conditions, we did not detect the distinctive conductance levels typical of large, stable pores, protein channels, or even pores that are partially proteinaceous. Rather, membrane conductance induced by sPB1-F2 fluctuated and visited almost all conductance values. sPB1-F2 also dramatically decreased bilayer stability in an electric field, consistent with a decrease in the line tension of a lipidic pore. Since similar membrane-destabilizing profiles are seen with proapoptotic proteins (e.g., Bax) and the cytoplasmic helix of human immunodeficiency virus gp41, we suggest that the basis for sPB1-F2-induced cell death may be the permeabilization and destabilization of mitochondrial membranes, leading to macromolecular leakage and apoptosis.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 401 ◽  
Author(s):  
Gabriel Laghlali ◽  
Kate E. Lawlor ◽  
Michelle D. Tate

Influenza A virus (IAV) is a major concern to human health due to the ongoing global threat of a pandemic. Inflammatory and cell death signalling pathways play important roles in host defence against IAV infection. However, severe IAV infections in humans are characterised by excessive inflammation and tissue damage, often leading to fatal disease. While the molecular mechanisms involved in the induction of inflammation during IAV infection have been well studied, the pathways involved in IAV-induced cell death and their impact on immunopathology have not been fully elucidated. There is increasing evidence of significant crosstalk between cell death and inflammatory pathways and a greater understanding of their role in host defence and disease may facilitate the design of new treatments for IAV infection.


2013 ◽  
Vol 172 (1-2) ◽  
pp. 24-34 ◽  
Author(s):  
Jude Juventus Aweya ◽  
Tze Minn Mak ◽  
Seng Gee Lim ◽  
Yee-Joo Tan

2021 ◽  
Author(s):  
Shalabh Mishra ◽  
Athira S Raj ◽  
Akhilesh Kumar ◽  
Ashwathi Rajeevan ◽  
Puja Kumari ◽  
...  

AbstractProgrammed cell death pathways are triggered by various stresses or stimuli, including viral infections. The mechanism underlying the regulation of these pathways upon Influenza A virus IAV infection is not well characterized. We report that a cytosolic DNA sensor IFI16 is essential for the activation of programmed cell death pathways in IAV infected cells. We have identified that IFI16 functions as an RNA sensor for influenza A virus by binding to genomic RNA. The activation of IFI16 triggers the production of type I, III interferons, and also other pro-inflammatory cytokines via the STING-TBK1 and Pro-caspase-1 signaling axis, thereby promoting cell death (apoptosis and pyroptosis in IAV infected cells). Whereas, IFI16 knockdown cells showed reduced inflammatory responses and also prevented cell mortality during IAV infection. These results demonstrate the pivotal role of IFI16-mediated IAV sensing and its essential role in activating programmed cell death pathways.


BioMetals ◽  
2010 ◽  
Vol 23 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Agostina Pietrantoni ◽  
Eleonora Dofrelli ◽  
Antonella Tinari ◽  
Maria Grazia Ammendolia ◽  
Simona Puzelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document