scholarly journals Protein kinase C inhibitors override ZEB1-induced chemoresistance in HCC

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Rahul Sreekumar ◽  
Muhammad Emaduddin ◽  
Hajir Al-Saihati ◽  
Karwan Moutasim ◽  
James Chan ◽  
...  

Abstract Epithelial–mesenchymal transition (EMT) is a process by which tumour cells lose epithelial characteristics, become mesenchymal and highly motile. EMT pathways also induce stem cell features and resistance to apoptosis. Identifying and targeting this pool of tumour cells is a major challenge. Protein kinase C (PKC) inhibition has been shown to eliminate breast cancer stem cells but has never been assessed in hepatocellular cancer (HCC). We investigated ZEB family of EMT inducer expression as a biomarker for metastatic HCC and evaluated the efficacy of PKC inhibitors for HCC treatment. We showed that ZEB1 positivity predicted patient survival in multiple cohorts and also validated as an independent biomarker of HCC metastasis. ZEB1-expressing HCC cell lines became resistant to conventional chemotherapeutic agents and were enriched in CD44high/CD24low cell population. ZEB1- or TGFβ-induced EMT increased PKCα abundance. Probing public databases ascertained a positive association of ZEB1 and PKCα expression in human HCC tumours. Inhibition of PKCα activity by small molecule inhibitors or by PKCA knockdown reduced viability of mesenchymal HCC cells in vitro and in vivo. Our results suggest that ZEB1 expression predicts survival and metastatic potential of HCC. Chemoresistant/mesenchymal HCC cells become addicted to PKC pathway and display sensitivity to PKC inhibitors such as UCN-01. Stratifying patients according to ZEB1 and combining UCN-01 with conventional chemotherapy may be an advantageous chemotherapeutic strategy.

2007 ◽  
Vol 405 (3) ◽  
pp. 533-540 ◽  
Author(s):  
Praveen Rao Juvvadi ◽  
Jun-ichi Maruyama ◽  
Katsuhiko Kitamoto

Woronin body, a specialized peroxisome, is a unique organelle involved in septal pore sealing and protecting filamentous fungus from excessive cytoplasmic bleeding. We recently characterized the Aohex1 gene encoding the major protein of the Woronin body in the fungus Aspergillus oryzae. Although three-dimensional microscopy revealed plugging of the septal pore by Woronin body, the mechanism of its formation remains unknown. We report here a reduction in the oligomeric forms (dimeric and tetrameric) of AoHex1 upon λ-phosphatase treatment, which indicated that AoHex1 phosphorylation in vivo facilitates its oligomerization. Concomitant with the presence of a highly conserved predicted PKC (protein kinase C)-phosphorylatable site (Ser151), the recombinant AoHex1 was phosphorylated by PKC in vitro and the administration of the PKC inhibitors, bisindolylmaleimide I and chelerythrine, resulted in the reduction of the oligomeric forms of AoHex1 in vivo. While spherical dot-like Woronin bodies were visualized by expressing the dsred2–Aohex1 and egfp (enhanced green fluorescent protein)–Aohex1 constructs in A. oryzae, treatment with the PKC inhibitors caused an abnormal localization to ring-like structures. In addition to the reduced phosphorylation of the mutagenized recombinant AoHex1[S151A] (Ser151 to alanine substitution) by PKC in vitro, the overexpression of Aohex1[S151A] as dsred2 fusion against the wild-type background also showed reduction of the oligomeric forms of the endogenous AoHex1 and its perturbed localization to ring-like structures in vivo. In conclusion, the present study implicates the relevance of PKC-dependent phosphorylation of the Woronin body protein, AoHex1, for its multimerization and proper localization.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4800-4800
Author(s):  
Dror Shalitin ◽  
Michael Share ◽  
Richard A. Campbell ◽  
Jeffrey Steinberg ◽  
Eric Sanchez ◽  
...  

Abstract Mammalian target of rapamycin (mTOR) is a central cell regulator involved in cell survival, growth and proliferation, and is being targeted for cancer therapy. There are two mTOR complexes, the rapamycin-sensitive mTORc1, and the rapamycin-insensitive mTORc2, both of which are downstream of the PI3K/Akt pathway. Protein Kinase C (PKC) refers to a family of serine/threonine kinases that are involved in cell growth, differentiation, apoptosis and migration, and regulated by mTORc2. We evaluated the effects of rapamycin in combination with several PKC inhibitors on the mTOR and PI3K/Akt pathways, two major routes involved in survival of multiple myeloma (MM) cells. First, we examined the expression of several key proteins involved in the regulation of these pathways. PTEN, a phosphatase that blocks AKT activation by inhibiting its upstream regulator PI3K, was highly expressed in U266 and RPMI8226, but found at much lower levels in MM1S. TSC1 and TSC2, proteins regulated by Akt, were also found at much lower levels in MM1S when compared to both U266 and RPMI8226. In contrast to the low levels of PTEN, TSC1 and TSC2, MM1S contained very high levels of PKCζ, a kinase that was undetectable in both U266 and RPMI8226. Given that TSC1 and TSC2 have been shown to negatively regulate mTOR, and PKCζ has been shown to be downstream of mTORc2, we examined the survival and proliferation of MM cells exhibiting normal and over-expression of PTEN following treatment with the mTORc1 inhibitor rapamycin. To modify PTEN expression, MM1S cells were transfected with the over-expression pCEP4-PTEN vector or the empty pCEP4 plasmid. The cells were treated with rapamycin (100nM) for 4 hours and then exposed for 10–30 minutes to FBS. Next, total protein was analyzed by immunoblot for expression patterns and phosphorylation events. The phosphorylation by mTORc1 of S6K was markedly suppressed in cells treated with rapamycin, independent of PTEN expression levels. Additionally, PKCζ phosphorylation was upregulated after treatment with rapamycin, also independent of PTEN expression levels. Based on these results, we hypothesized that blocking mTORc1 leads to a feedback response that increases the activity of mTORc2, resulting in heightened PKCζ phosphorylation levels which may enhance tumor cell growth. Thus, we investigated the effects of blocking mTORc2 through inhibiting its downstream effector PKC as well as mTORc1 with rapamycin on MM cell growth and survival. To determine this, we used several PKC inhibitors in combination with rapamycin. In vitro, MM1S, U266 and RPMI8226 were equally sensitive to single agent rapamycin (IC50 20μM) and the PKC inhibitors rottlerin (IC50 3μM) and Gö 6976 (IC50 1μM). Combinations of rapamycin with either rottlerin or Gö 6976 both significantly increased the ability to inhibit cell proliferation in all three cell lines. As calculated by the Chou-Talalay method, marked synergistic anti-MM effects were observed with both PKC inhibitors. Based on our in vitro results, we are currently evaluating the combination of rapamycin and rottlerin in vivo using our SCID-hu MM models. These promising results provide the potential for further exploration of this new combination approach for the treatment of MM.


2002 ◽  
Vol 22 (7) ◽  
pp. 2099-2110 ◽  
Author(s):  
Xianjun Fang ◽  
Shuangxing Yu ◽  
Janos L. Tanyi ◽  
Yiling Lu ◽  
James R. Woodgett ◽  
...  

ABSTRACT Lysophosphatidic acid (LPA) is a natural phospholipid with multiple biological functions. We show here that LPA induces phosphorylation and inactivation of glycogen synthase kinase 3 (GSK-3), a multifunctional serine/threonine kinase. The effect of LPA can be reconstituted by expression of Edg-4 or Edg-7 in cells lacking LPA responses. Compared to insulin, LPA stimulates only modest phosphatidylinositol 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt) that does not correlate with the magnitude of GSK-3 phosphorylation induced by LPA. PI3K inhibitors block insulin- but not LPA-induced GSK-3 phosphorylation. In contrast, the effect of LPA, but not that of insulin or platelet-derived growth factor (PDGF), is sensitive to protein kinase C (PKC) inhibitors. Downregulation of endogenous PKC activity selectively reduces LPA-mediated GSK-3 phosphorylation. Furthermore, several PKC isotypes phosphorylate GSK-3 in vitro and in vivo. To confirm a specific role for PKC in regulation of GSK-3, we further studied signaling properties of PDGF receptor β subunit (PDGFRβ) in HEK293 cells lacking endogenous PDGF receptors. In clones expressing a PDGFRβ mutant wherein the residues that couple to PI3K and other signaling functions are mutated with the link to phospholipase Cγ (PLCγ) left intact, PDGF is fully capable of stimulating GSK-3 phosphorylation. The process is sensitive to PKC inhibitors in contrast to the response through the wild-type PDGFRβ. Therefore, growth factors, such as PDGF, which control GSK-3 mainly through the PI3K-PKB/Akt module, possess the ability to regulate GSK-3 through an alternative, redundant PLCγ-PKC pathway. LPA and potentially other natural ligands primarily utilize a PKC-dependent pathway to modulate GSK-3.


2020 ◽  
Vol 21 (3) ◽  
pp. 715 ◽  
Author(s):  
Daniele Vergara ◽  
Sara Ravaioli ◽  
Eugenio Fonzi ◽  
Loredaria Adamo ◽  
Marina Damato ◽  
...  

Members of the carbonic anhydrase family are functionally involved in the regulation of intracellular and extracellular pH in physiological and pathological conditions. Their expression is finely regulated to maintain a strict control on cellular homeostasis, and it is dependent on the activation of extracellular and intracellular signaling pathways. Combining RNA sequencing (RNA-seq), NanoString, and bioinformatics data, we demonstrated that the expression of carbonic anhydrase 12 (CAXII) is significantly different in luminal and triple negative breast cancer (BC) models and patients, and is associated with the activation of an epithelial mesenchymal transition (EMT) program. In BC models, the phorbol ester 12-myristate 13-acetate (PMA)-mediated activation of protein kinase C (PKC) induced a down-regulation of CAXII with a concomitant modulation of other members of the transport metabolon, including CAIX and the sodium bicarbonate cotransporter 3 (NBCn1). This is associated with a remodeling of tumor glycolytic metabolism induced after PKC activation. Overall, this analysis highlights the dynamic nature of transport metabolom and identifies signaling pathways finely regulating this plasticity.


Sign in / Sign up

Export Citation Format

Share Document