scholarly journals CircCNTNAP3-TP53-positive feedback loop suppresses malignant progression of esophageal squamous cell carcinoma

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Hui Wang ◽  
Xuming Song ◽  
Yajing Wang ◽  
Xuewen Yin ◽  
Yingkuan Liang ◽  
...  

AbstractMutation or downregulation of p53 (encoded by TP53) accelerates tumorigenesis and malignant progression in esophageal squamous cell carcinoma (ESCC). However, it is still unknown whether circular RNAs (circRNAs), a novel class of endogenous noncoding RNAs, participate in the regulation of this progress. In this study, we explored the expression profiles of circRNAs in three paired samples of ESCC and identified cCNTNAP3, which is a circRNA that originates from the CNTNAP3 gene transcript and is highly expressed in normal human esophageal tissue. However, we found that the cCNTNAP3 expression level was significantly downregulated in ESCC tissues. In vitro and in vivo studies revealed that cCNTNAP3 inhibited proliferation and increased apoptosis in p53 wild-type ESCC cells, but not in mutant cells. Mechanistically, we found that cCNTNAP3 promotes the expression of p53 by sponging miR-513a-5p. Rescue assay confirmed that the suppressive function of cCNTNAP3 was dependent on miR-513a-5p. We also observed that p53/RBM25 participated in the formation of cCNTNAP3, which implied the existence of a positive feedback loop between cCNTNAP3 and p53. Furthermore, the downregulation of cCNTNAP3 was significantly correlated with later T stage and thus can serve as an independent risk factor for the overall survival of patients with p53 wild-type ESCC. In conclusion, the cCNTNAP3-TP53 positive feedback loop may provide a potential target for the management of ESCC, which also reveals the important role of circRNAs in the regulation of p53.

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jiwei Cheng ◽  
Haibo Ma ◽  
Ming Yan ◽  
Wenqun Xing

AbstractEsophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.


2013 ◽  
Vol 6 (273) ◽  
pp. ra28-ra28 ◽  
Author(s):  
Xiangming Ding ◽  
Hongya Pan ◽  
Jiong Li ◽  
Qi Zhong ◽  
Xiaohong Chen ◽  
...  

The transcription factor AP1 (activating protein 1), a heterodimer of the JUN and FOS proteins, promotes the invasive growth and metastasis of various tumors such as squamous cell carcinoma (SCC), breast cancer, and melanoma. AP1 activity is transcriptionally induced through a positive feedback loop. We identified the histone demethylase KDM4A (lysine-specific demethylase 4A) as a key epigenetic priming factor in this positive feedback loop. KDM4A contributed to the induction of genes encoding the AP1 transcription factors and the invasive growth and metastasis of SCC. KDM4A knockdown decreased the growth factor–induced messenger RNA expression and protein abundance of AP1 family members, including JUN and FOSL1. Mechanistically, histone demethylation by KDM4A facilitated the binding of the AP1 complex to the promoters of JUN and FOSL1, thereby promoting the positive feedback loop that maintains activation of AP1. In a mouse model of SCC, KDM4A knockdown inhibited lymph node metastasis. Moreover, the abundance of KDM4A correlated with the abundance of JUN and FOSL1 in human SCC tissues, and KDM4A expression was increased in human lymph node metastases. Our studies provide insights into the epigenetic control of AP1 and tumor invasion and suggest that KDM4A could be an important therapeutic target for inhibiting invasive SCC growth and metastasis.


Oncotarget ◽  
2016 ◽  
Vol 7 (22) ◽  
pp. 31892-31906 ◽  
Author(s):  
Zhipeng Li ◽  
Zejia Yang ◽  
Antonino Passaniti ◽  
Rena G. Lapidus ◽  
Xuefeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document